Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The potential for mitochondrial fat oxidation in human skeletal muscle influences whole body fat oxidation during low-intensity exercise
Gymnastik- och idrottshögskolan, GIH, Institutionen för idrotts- och hälsovetenskap.ORCID-id: 0000-0001-9526-2967
Gymnastik- och idrottshögskolan, GIH, Institutionen för idrotts- och hälsovetenskap, Åstrandlaboratoriet, Forskningsgruppen Mitokondriell funktion och metabolisk kontroll.
Vise andre og tillknytning
Ansvarlig organisasjon
2007 (engelsk)Inngår i: American journal of physiology. Endocrinology and metabolism, ISSN 0193-1849, Vol. 292, nr 1, s. E223-30Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The purpose of this study was to investigate fatty acid (FA) oxidation in isolated mitochondrial vesicles (mit) and its relation to training status, fiber type composition, and whole body FA oxidation. Trained (Vo(2 peak) 60.7 +/- 1.6, n = 8) and untrained subjects (39.5 +/- 2.0 ml.min(-1).kg(-1), n = 5) cycled at 40, 80, and 120 W, and whole body relative FA oxidation was assessed from respiratory exchange ratio (RER). Mit were isolated from muscle biopsies, and maximal ADP stimulated respiration was measured with carbohydrate-derived substrate [pyruvate + malate (Pyr)] and FA-derived substrate [palmitoyl-l-carnitine + malate (PC)]. Fiber type composition was determined from analysis of myosin heavy-chain (MHC) composition. The rate of mit oxidation was lower with PC than with Pyr, and the ratio between PC and Pyr oxidation (MFO) varied greatly between subjects (49-93%). MFO was significantly correlated to muscle fiber type distribution, i.e., %MHC I (r = 0.62, P = 0.03), but was not different between trained (62 +/- 5%) and untrained subjects (72 +/- 2%). MFO was correlated to RER during submaximal exercise at 80 (r = -0.62, P = 0.02) and 120 W (r = -0.71, P = 0.007) and interpolated 35% Vo(2 peak) (r = -0.74, P = 0.004). ADP sensitivity of mit respiration was significantly higher with PC than with Pyr. It is concluded that MFO is influenced by fiber type composition but not by training status. The inverse correlation between RER and MFO implies that intrinsic mit characteristics are of importance for whole body FA oxidation during low-intensity exercise. The higher ADP sensitivity with PC than that with Pyr may influence fuel utilization at low rate of respiration.

sted, utgiver, år, opplag, sider
2007. Vol. 292, nr 1, s. E223-30
HSV kategori
Identifikatorer
URN: urn:nbn:se:gih:diva-456DOI: 10.1152/ajpendo.00266.2006PubMedID: 16926382OAI: oai:DiVA.org:gih-456DiVA, id: diva2:1822
Tilgjengelig fra: 2007-01-25 Laget: 2009-03-03 Sist oppdatert: 2017-09-19bibliografisk kontrollert
Inngår i avhandling
1. Effects of endurance exercise on mitochondrial efficiency, uncoupling and lipid oxidation in human skeletal muscle
Åpne denne publikasjonen i ny fane eller vindu >>Effects of endurance exercise on mitochondrial efficiency, uncoupling and lipid oxidation in human skeletal muscle
2006 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

During the last years the importance of muscle mitochondria, and mitochondrial function, not only for performance but also for health has been highlighted. The main function of the mitochondria is to produce ATP by oxidative phosphorylation (coupled respiration). In skeletal muscle a substantial part of the energy is lost in non-coupled reactions, it has been estimated that non-coupled respiration accounts for as much as 20-25% of the total energy expenditure. It is now almost 10 years since the discovery of uncoupling protein 3 (UCP3), but the functional role of UCP3 in non-coupled respiration is not completely understood. The aim of this thesis was to investigate mitochondrial efficiency (P/O ratio), mitochondrial fat oxidation, non-coupled respiration (state 4) and protein expression of UCP3 in response to exercise and training in human skeletal muscle.

In study I eight healthy subjects endurance trained for 6 weeks and 9 subjects performed one exercise session (75 min). In the cycling efficiency study II, and in the study on mitochondrial lipid oxidation III, 9 healthy trained and 9 healthy untrained men participated. In study IV mitochondrial function and reactive oxygen species (ROS) production was studied in 9 elite athletes after extreme exercise, 24 hours of cycling, running and paddling.

Endurance training increased whole body oxygen uptake (VO2 peak) by 24% and muscle citrate synthase (CS) activity (marker of mitochondrial volume) by 47% (P< 0.05), but non-coupled respiration and UCP3 adjusted for mitochondrial volume were reduced (P< 0.05). One session of exercise did not affect non-coupled respiration or UCP3.

Cycling efficiency (expressed as work efficiency) was inversely related to protein expression of UCP3 (r= 0.57) and correlated to type 1 fibers (r= 0.58). Work efficiency was not influenced by training status or correlated to mitochondrial efficiency. UCP3 was 52% higher in the untrained men (P< 0.05). Mitochondrial capacity for fat oxidation was not influenced by training status, but related to fiber type composition. The hypothesis that mitochondrial fat oxidation is related to whole body lipid oxidation during low-intensity exercise was confirmed (r= 0.62).

Mitochondrial capacity for fat oxidation increased after 24 hours of exercise, whereas mitochondrial efficiency (P/O ratio) decreased. P/O ratio remained reduced also after 28 hours of recovery. Formation of ROS by isolated mitochondria increased after exercise. Non-coupled respiration (state 4), however, decreased and UCP3 tended to be reduced after recovery from ultra-endurance exercise (P= 0.07).

In conclusion: UCP3 does not follow exercise induced mitochondrial biogenesis. UCP3 is reduced by endurance training and lower in trained men compared with untrained men. Non-coupled respiration, measured in isolated mitochondria was reduced by endurance training and reduced after recovery from ultra-endurance exercise, but similar in trained and untrained men. In these studies UCP3 and non-coupled respiration follow the same pattern but are not correlated. Further studies are needed to understand the complex role of UCP3 in skeletal muscle metabolism.

sted, utgiver, år, opplag, sider
Department of Physiology and Pharmacology, Karolinska Institutet, 2006
Identifikatorer
urn:nbn:se:gih:diva-13 (URN)91-7357-059-1 (ISBN)
Disputas
2007-01-19, Aulan, GIH, 09:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2007-01-25 Laget: 2007-01-25 Sist oppdatert: 2017-09-26

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedLink to Free Full Text

Personposter BETA

Sahlin, Kent

Søk i DiVA

Av forfatter/redaktør
Fernström, MariaSahlin, Kent
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 282 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf