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Testosterone (T) administration has previously been shown to improve muscle size and
oxidative capacity. However, the molecular mechanisms underlying these adaptations in
human skeletal muscle remain to be determined. Here, we examined the effect of
moderate-dose T administration on molecular regulators of muscle protein turnover and
mitochondrial remodeling in muscle samples collected from young women. Forty-eight
healthy, physically active, young women (28 ± 4 years) were assigned in a random double-
blind fashion to receive either T (10 mg/day) or placebo for 10-weeks. Muscle biopsies
collected before and after the intervention period were divided into sub-cellular fractions
and total protein levels of molecular regulators of muscle protein turnover and
mitochondrial remodeling were analyzed using Western blotting. T administration had
no effect on androgen receptor or 5a-reductase levels, nor on proteins involved in the
mTORC1-signaling pathway (mTOR, S6K1, eEF2 and RPS6). Neither did it affect the
abundance of proteins associated with proteasomal protein degradation (MAFbx, MuRF-
1 and UBR5) and autophagy-lysosomal degradation (AMPK, ULK1 and p62). T
administration also had no effect on proteins in the mitochondria enriched fraction
regulating mitophagy (Beclin, BNIP3, LC3B-I, LC3B-II and LC3B-II/I ratio) and
morphology (Mitofilin), and it did not alter the expression of mitochondrial fission- (FIS1
and DRP1) or fusion factors (OPA1 and MFN2). In summary, these data indicate that
improvements in muscle size and oxidative capacity in young women in response to
moderate-dose T administration cannot be explained by alterations in total expression of
molecular factors known to regulate muscle protein turnover or mitochondrial remodeling.
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INTRODUCTION

Testosterone (T) is a well-known anabolic agent which promotes
dose-dependent increases of lean mass and muscle hypertrophy
in young and old men (1–3). Similarly, we and others have
previously shown that administration of exogenous T promotes
muscle anabolism and lean mass accretion in pre- and post-
menopausal women (4–6). However, despite compelling
evidence of its anabolic effect, the molecular events underlying
muscle hypertrophy following T exposure in humans are not well
understood and data from female-only cohorts are lacking.

Given its role as a critical regulator of muscle protein
synthesis (7, 8), the mechanistic target of rapamycin complex 1
(mTORC1) pathway is considered a candidate mediator of T-
induced muscle growth (9). Indeed, provision of T in cultured
muscle cells stimulates hypertrophy via mTORC1-dependent
signaling (10, 11). This is further supported by rodent data
showing reduced signaling activity downstream of mTORC1
after androgen deprivation, while restoring androgen levels by
nandrolone injections (6 mg/kg bw) reversed this effect (12).
Studies seeking to depict the role of mTORC1-signaling in
human muscle following T provision are scarce and have
provided mixed results. Howard et al., 2020 showed that
weekly injections of T enanthate (200 mg) during 28-days of
severe energy deficit did not alter mTORC1-signaling following
exercise and protein intake in young men (13). On the other
hand, Gharahdaghi and colleagues showed that biweekly T
injections (Sustanon, 250 mg) in combination with resistance
training potentiated exercise-induced mTORC1-signaling in old
men (14). More research in human muscle is although required
to verify whether a similar mechanism of action is present in
other cohorts.

Changes in muscle mass are dictated by the finely tuned
balance between synthesis and degradation of muscle protein
(15). Suppression of the latter is assumed to be central for driving
lean mass accretion in humans following T exposure (16–18).
Mechanistically, protein degradation occurs primarily through
the autophagy-lysosomal and the ubiquitin-proteasomal system
(UPS) (19). The UPS involves two well characterized muscle
specific ubiquitin ligases; Muscle Atrophy F-box (MAFbx) and
Muscle RING-finger 1 (MuRF-1) (20, 21). The existing
knowledge of how T provision influences markers of UPS-
mediated protein degradation is although limited, and
inconclusive results have been reported. In the study by
Gharahdaghi and colleagues, MAFbx or MuRF-1 protein levels
remained unchanged (14), whilst a reduction of these markers
were observed in hypogonadal men following T replacement
therapy (TRT) (50-100 mg daily) (22). Moreover, whether the
autophagy-lysosomal pathway is influenced by androgen levels
in human muscle remains to be explored. The increased re-
utilization of intracellular amino acids observed after T provision
might however represent a putative mechanism for how
autophagy could prevent a negative protein balance in the
fasted state and thereby contribute to muscle growth (17, 23).
In rodents, muscle atrophy induced by castration is associated
with elevated levels of microtubule-associated protein 1A/B-light
chain 3B (LC3B)-II and polyubiquitin-binding protein 62 (p62),
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whilst the re-introduction of androgens to the circulation
restored their expression levels (24, 25). As such, there is
evidence that the autophagy pathway is responsive to changes
in systemic androgen concentrations, however, these findings
may not be readily translatable to human physiology under in
vivo conditions where androgen concentrations are less altered in
response to exogenous supplementation.

We have previously demonstrated that administration of T
increased oxidative capacity in human muscle by improving
respiration in isolated mitochondria, a measure of mitochondrial
quality (26). However, since this was not paralleled by
concomitant increases in mitochondrial protein abundance,
i.e., citrate synthase and respiratory chain complex I-V, other
factors, such as alterations in mitochondrial remodeling, may
underlie these changes. Intriguingly, systemic androgen levels are
shown to impact the abundance of proteins involved in
mitochondrial quality control in mouse muscle (27, 28), and
exposure to high doses of T (50 mg/kg bw) upregulated several
key proteins associated with mitophagy as well as fission and
fusion (29). While prior work has focused on mitochondrial
biogenesis in human muscle following T provision (14, 30),
molecular regulators of the remodeling machinery have
previously not been addressed in this context.

The molecular mechanisms responsible for adaptations in
human skeletal muscle following T administration are not fully
understood and the translatability from cell and rodent studies is
often limited. Furthermore, understanding how mitochondrial
turnover is affected by alternating T concentrations may have
clinical implications for mitigating declines in muscle mass and
function during aging. Therefore, in the present study we sought
to investigate if the previously observed increases in muscle size
and oxidative capacity following 10 weeks of T administration in
young women are mediated by alterations in protein levels of
molecular markers regulating muscle protein turnover and
mitochondrial remodeling.
MATERIAL AND METHODS

Ethical Approval
This study is part of a larger project investigating the impact of T
administration on physical performance and muscle mass in
young physically active women, registered at ClinicalTrials.gov
(NCT03210558). This study was approved by the local ethics
committee in Stockholm (2016/1485-32, amendment 2017/779-
32), and was conducted in line with the principles outlined in the
Declaration of Helsinki. All participants received detailed
information about the design of the study and associated risks
before providing their written consent.

Study Design
The design of the present study has been described in detail in
our previous publications (4, 26, 31). Briefly, this was a
randomized, double-blinded, placebo-controlled trial.
Following initial screening procedures, participants were
randomly allocated to 10-weeks of either T or placebo
April 2022 | Volume 13 | Article 874748
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treatment. T was administered by manually applying a gel (10
mg, Andro-Feme 1) to the outer thigh every evening. This dose
was chosen to increase serum levels of T significantly above the
physiological level without inducing harmful side effects.
Participants were instructed to keep their habitual activity
levels throughout the study period, and they were also
informed not to make any changes to their diet.

Participants
Forty-eight young (28 ± 4 years), physically active, women
participated in the present study. Physical characteristics and
serum levels of T have been reported previously (4, 26, 31).

Muscle Biopsy Sampling
Muscle samples were collected ~ 60 min after the participants
finished a physical testing session (26, 31). Muscle biopsies were
obtained from the middle portion of m. vastus lateralis after
administration of local anesthesia using the Weil-Blakesley
conchotome technique (32). Tissue samples were immediately
blotted free of blood and rapidly frozen in liquid nitrogen until
further processing.

Muscle Tissue Processing
Muscle samples were freeze-dried overnight and dissected free of
blood, fat, and connective tissue under a stereo microscope
(VisiScope, VWR). Fibre bundles were then mixed carefully
and stored in -80°C before further processing.

Immunoblotting Sample Preparation
To study protein levels in whole muscle homogenates, ~ 2 mg of
freeze-dried muscle was homogenized in ice-cold buffer (100 µl ·
mg-1 dry weight) containing 250 mM Sucrose, 20 mM HEPES
(pH 7.4), 10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM
EGTA, 10 mM b-glycerophosphate, 1% phosphatase inhibitor
cocktail (Sigma P-2850) and 1% (v/v) Halt Protease Inhibitor
Cocktail (Thermo Scientific, Rockford, USA) using a Bullet-
Blender™ (NextAdvance, New York, USA) and 0.5 mm
Zirconium Oxide Beads (NextAdvance, New York, USA). The
supernatant was collected after lysates had been rotating for 60
min at 4°C and centrifuged at 10,000 g for 15 min. Protein
concentration was determined from a small aliquot of the
supernatant using Pierce™ 660 nm protein assay (Thermo
Scientific, Rockford, USA). The samples were diluted in 4x
Laemmli sample buffer (Bio-Rad Laboratories, Richmond,
USA) and homogenization buffer, rendering a protein
concentration of 0.75 µg µl-1. The samples were heated to 95°C
for 5 min before being stored in -30°C.

To study protein levels specifically in the mitochondrial
compartment, we fractionated muscle according to a
previously described protocol with minor adjustments (33). In
brief, ~ 6 mg of freeze-dried muscle was homogenized in ice-cold
buffer (100 µl · mg-1 dry weight) containing 250 mM Sucrose, 20
mMHEPES (pH 7.4), 10 mM KCl, 1.5 mMMgCl2, 1 mM EDTA,
1 mM EGTA, 10 mM b-glycerophosphate, 1% phosphatase
inhibitor cocktail (Sigma P-2850) and 1% (v/v) Halt Protease
Inhibitor Cocktail (Thermo Scientific, Rockford, USA), using a 2
ml glass Dounce tissue grinder set (Sigma, D8938), applying 10
Frontiers in Endocrinology | www.frontiersin.org 3
and 30 strokes with pestle A and B, respectively. The tissue lysate
was then transferred into new tubes, rotated for 60 min at 4°C
and centrifuged at 1000 g for 10 min to allow for the formation of
a myofibrillar pellet. The supernatant was then carefully
transferred into new tubes and centrifuged at 16,000 g for 20
min, resulting in a cytosolic protein fraction. The remaining
pellet was washed twice by carefully resuspending the pellet in
homogenization buffer. Following the final centrifugation, the
pellet was dissolved in 60 µl of homogenization buffer containing
1% TritonX-100, resulting in a membrane fraction (hereafter
referred to as the mitochondrial fraction). This fraction was then
combined with 20 µl of 4x Laemmli sample buffer (Bio-Rad
Laboratories, Richmond, USA) and 400 mM dithiothreitol,
heated to 37°C for 30 min, before being stored in -30°C.
Protein concentration was determined using Ionic Detergent
Compatibility Reagent (Thermo Scientific, Rockford, USA) and
Pierce™ 660 nm protein assay (Thermo Scientific, Rockford,
USA). To determine the purity of the mitochondrial fraction, 5
ug of protein from this fraction and the cytosolic fraction were
loaded side-by-side on a gel and immunoblotted for Porin
(VDAC1) and translocase of outer mitochondrial membrane
20 (TOM20), two proteins found in the outer mitochondrial
membrane, and the eukaryotic elongation factor 2 (eEF2), a
protein dispersed throughout the cytoplasm. As demonstrated
in Figure 3G, eEF2 was only present in the cytosolic fraction
whereas Porin and TOM20 were only detected in the
mitochondrial fraction.

SDS-PAGE and Immunoblotting
From each sample, 15 µg and 3 µg of protein from whole muscle
homogenate and the mitochondrial fraction was loaded on 26-well
Criterion TGX gradient gels (4-20% acrylamide; Bio-Rad
Laboratories), respectively. Electrophoresis was performed on ice at
300 V for ~ 30 min. The gels were then equilibrated for 30 min in
transfer buffer (25 mM Tris base, 192 mM glycine, and 10%
methanol) after which proteins were transferred to PVDF
membranes (Bio-Rad Laboratories) at constant current (300 mA)
for 180min at 4°C.Membranes were then stained usingMemCode™

Reversible Protein Stain Kit (Thermo Scientific, Rockford, USA) to
confirm even transfer of proteins. After destaining, membranes
were blocked for 1h in Tris-buffered saline (TBS; 20 mM Tris base,
137 mM NaCl, pH 7.6) containing 5% non-fat dry milk followed by
incubation overnight (4°C) with primary antibodies diluted in TBS
supplemented with 0.1% Tween-20 and 2.5% non-fat dry milk (TBS-
TM). Next morning, membranes were washed after which secondary
antibodies conjugated to horseradish peroxidase were applied for 1h.
Membranes were then washed again in TBS-TM (2 x 1 min, 3 x 10
min) followed by 3 x 5 min with TBS. Lastly, membranes were
incubated with Super Signal™ Femto Chemiluminescent Substrate
(Thermo Scientific) for 5 min to allow for band detection in the
molecular imager (ChemiDoc™MP, Bio-Rad Laboratories). Before
the blocking step,membranes were cut into strips and later assembled
to expose all samples to the same blotting conditions. Due to limited
quantity the mitochondrial fraction samples, following visualization,
membranes were stripped using Restore Western Blot Stripping
Buffer (Thermo Scientific) for 30 min at 37°C, washed and re-
probed with a new primary antibody. For whole muscle
April 2022 | Volume 13 | Article 874748
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homogenates, protein levels of each sample were normalized to their
total protein stain. For the mitochondrial fraction, protein levels were
normalized to the corresponding protein level of Porin, which
remained unchanged throughout the intervention (data not
shown). Quantification of bands were performed using the Image
Lab™ software (Bio-Rad Laboratories).

Antibodies
For immunoblotting, primary antibodies against androgen
receptor (#D6F11XP®), mTOR (#2983), S6K1 (#2708), eEF2
(#2332), AMPK (#2532), ULK1 (#6439), p62 (#8025), LC3B
(#2775), Beclin (#3495) and BNIP3 (#44060), were purchased
from Cell Signaling Technology (Beverly, USA). Primary
antibodies against 5a-reductase 2 (#293232), MuRF-1 (#sc-
398608), UBR5 (#sc-515494), TOM20 (sc-136211) and RPS6
(#sc-74459), were purchased from Santa Cruz Biotechnology
(Heidelberg, Germany). Primary antibodies against MAFbx
(#92281), Porin (#154856), OPA1 (#157457), DRP1 (#184247),
FIS1 (#156865), MFN2 (#56889) and Mitofilin (#137057), were
purchased from Abcam (Cambridge, UK). All antibodies were
diluted 1:1000 except for 5a-reductase, MuRF-1, UBR5, S6,
Beclin, LC3B, OPA1, MFN2 which were diluted 1:500, and
eEF2 and Porin which were diluted 1:2000. Secondary anti-
mouse (#7076, 1:10000) and secondary anti-rabbit (#7074,
1:10000) were purchased from Cell Signaling Technology.

Statistical Analyses
Data are presented as means ± standard deviation (SD).
Statistical analyses were performed using GraphPad Prism
version 9.1.2 for Windows (San Diego, California, USA). Data
were analyzed with a two-way ANOVA with factors for group (T
vs. placebo) and time (pre vs post intervention). Bonferroni
multiple comparison was applied in case of significant
interaction to localize differences. The significance level for all
statistical tests was two-tailed and set at P < 0.05.
RESULTS

Androgen Receptor, 5-a Reductase and
Anabolic Signaling
Administration of T had no effect on AR protein content but
levels of 5-a reductase increased on average by 15% over time
(main effect of time, P<0.05) (Figures 1A, B). In a similar
fashion, administration of T did not influence the abundance
of mTOR, S6K1 or eEF2, but levels of RPS6 increased on average
by 11% over time and was overall higher in the group receiving T
(main effect of time and group, P<0.05) (Figures 1C–F).

Ubiquitin-Proteasomal and
Lysosomal-Autophagy Pathway
Administration of T did not alter protein levels of MAFbx,
MuRF1 or UBR5 in the ubiquitin-proteasomal pathway or
AMPK, ULK1 or p62 in the lysosomal-autophagy pathway
(Figures 2A–F).
Frontiers in Endocrinology | www.frontiersin.org 4
Mitochondrial Remodeling
Administration of T had no effect on protein levels of Beclin and
Mitofilin (Figures 3A, F) and OPA1, 225 MFN2, FIS1 or DRP1
(Figures 4A–D) in the mitochondrial fraction. LC3B-I (Figure 3C)
also remained unchanged while LC3B-II increased on average by
30% over time, (main effect of time, P<0.05; Figure 3D). In a
similar fashion, BNIP3 increased on average by 25% in the
mitochondrial fraction (main effect of time, P<0.05 Figure 3B).
The ratio between LC3B-II and LC3B-I remained unaltered in
response to the intervention (Figure 3E).
DISCUSSION

We and others have previously reported that administration of T
increases leanmass and aerobic capacity in human subjects (4, 26).
However, the molecular mechanisms by which T elicits
adaptations in skeletal muscle remains poorly understood. Here
we report that T provision in young women did not modulate total
levels of key proteins involved in androgen signaling/metabolism,
mTORC1-signaling, ubiquitin and autophagy-mediated protein
degradation and mitochondrial remodeling. Our findings thus
suggest that increases in skeletal muscle size and mitochondrial
function following T exposure are not related to altered expression
of key factors regulating these processes.

In skeletal muscle, ARs are dispersed throughout the
cytoplasm but predominantly located in resident muscle stem
cells and myonuclei (34, 35). ARs are not only responsible for
mediating the anabolic effects of T (10, 36), but are also critical
for muscle fiber remodeling following chronic RT (37, 38). In
males, administration of T is commonly accompanied by
increased intramuscular AR content (13, 14, 17, 35, 39), but no
study has previously examined whether such change occur in
young women. In the present study, despite raising T serum
concentrations ~ fivefold above basal levels, AR protein
expression remained unchanged, a somewhat unexpected
finding given that basal muscle AR content is lower in women
than in men (40). The lack of change could however be related to
the moderate dosage provided (10 mg daily), the route of
administration (transdermal), or that AR levels were altered in
a transient manner and had returned to a basal state at the post-
biopsy timepoint. The latter is supported by work from Ferrando
and colleagues showing elevated AR protein levels 4-weeks after
the onset of T administration, but these had returned to pre-
treatment levels 20 weeks later (17). Nonetheless, in accordance
with our findings, AR protein levels were unaltered also in old
women receiving oral oxandrolone (7.5 mg twice a day) for 14
consecutive days, whereas men in the same study displayed
significant increases (39). Accordingly, rodent data suggest that
ARs are dispensable for normal muscle development in females,
but not in males (41). It is from our data therefore evident that an
augmented intramuscular AR content is not critical in women
for mediating the anabolic effects of elevated T levels. This
finding may highlight a sexual dimorphism given that male
subjects consistently display contrasting results. Furthermore,
with regard to T metabolism, we also measured intramuscular
April 2022 | Volume 13 | Article 874748
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A B
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E F
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FIGURE 1 | Protein levels of androgen receptor (A), 5a-reductase (B), mTOR (C), S6K1 (D), eEF2 (E) and RPS6 (F) before (black dots) and after the intervention
(red dots). Representative blots for each individual protein target are shown above each graph. Loading control is represented by a band at ~ 95 kDa from the

corresponding total protein stain (Memcode™). The values presented are means ± SD and individual data points from 18 and 16 individuals (DF 32) in the placebo
group and T group, respectively. The ANOVA revealed a significant main effect of time with respect to changes in protein levels for 5a-reductase and a significant
main effect of time and group for RPS6.
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content of 5a-reductase, the enzyme responsible for converting
T into the highly potent metabolite dihydrotestosterone (DHT)
(42). As both groups displayed slightly increased 5a-reductase
protein content (main effect of time), we interpreted this as an
effect not specific to T provision and that changes in muscle size
cannot be explained by an altered capacity to metabolize T
locally in the tissue. This aligns well with other studies
questioning the anabolic effect of DHT in human subjects (43).
On the other hand, we cannot completely rule out that other
enzymes involved in androgen metabolism were affected by the
current treatment, i.e., aromatase. Another factor that may have
played a critical role for muscle adaptation here is the
intramuscular concentration of T and other androgens, as
discussed in a recent review (44). We did however not measure
intramuscular levels of androgens in the present study but this is
an important aspect that needs to be addressed by future work.

Studies in cultured cells and animal muscle have provided
compelling evidence that T provision stimulates anabolism in an
mTORC1-dependent manner (10–12), whereas data gathered from
human trials have yielded inconsistent results (13, 14). To improve
our understanding of how anabolic signaling may regulate muscle
growth following T exposure, we measured the total expression of
key proteins involved in the mTORC1-pathway. While most
protein targets remained unchanged, only RPS6 displayed a
significant pre-to-post increase in the T group, but this finding
Frontiers in Endocrinology | www.frontiersin.org 6
should be interpreted with caution as no interaction effect was
present (main effect of time and group). Nevertheless, this may
represent a potential mechanism by which T administration
stimulates an increase in muscle mass. However, it is still possible
that acute activation of this signaling cascade in response to
anabolic stimuli, such as contractile activity and/or nutrients, was
altered with T provision. In this regard, Gharahdaghi et al., 2019
demonstrated that T therapy potentiated acute resistance exercise-
induced mTORSer2448 and RPS6Ser235/236 phosphorylation in older
men (14). An enhanced response to each exercise session
performed during the intervention may therefore explain how T
provision stimulated muscle growth in our cohort. However, the
observations of Gharahdaghi et al., 2019 were in a cohort of elderly
men, in which a blunted signaling response due to potential
anabolic resistance may have confounded the results. Future
studies are therefore warranted to determine if a similar effect
also exists in young individuals who are sensitive to anabolic
stimuli. Similarly, whether T provision has a synergistic effect on
the acute signaling response following nutrient intake is yet to be
determined, but it has been reported that T provision does not
further enhance the stimulatory role of amino acids on rates of
muscle protein synthesis in human muscle (18), indicating that
such effect would be of less importance to the present findings.

In humans, T provision is suggested to increase muscle
mass in part by suppressing rates of muscle protein degradation
A B

D E F

C

FIGURE 2 | Protein levels of MAFbx (A), MuRF-1 (B), UBR5 (C), AMPK (D), ULK1 (E) and p62 (F) before (black dots) and after the intervention (red dots).
Representative blots for each individual protein target are shown above each graph. Loading control is represented by a band at ~ 95 kDa from the corresponding

total protein stain (Memcode™). The values presented are means ± SD and individual data points from 18 and 16 individuals (DF 32) in the placebo group and T
group, respectively.
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FIGURE 3 | Protein levels of Beclin (A), BNIP3 (B), LC3B-I (C), LC3B-II (D), LC3B-II/I ratio (E) and Mitofilin (F) in the mitochondrial fraction before (black dots) and
after the intervention (red dots), as well as the assessment of mitochondrial fraction purity (G). Representative blots for each individual protein target and Porin are
shown above each graph. The values presented are means ± SD and individual data points from 22 and 20 individuals (DF 40) in the placebo group and T group,
respectively. The ANOVA revealed a significant main effect of time with respect to changes in protein levels for BNIP3 and LC3B-II. For illustrative purposes, two
subjects from the placebo group displaying extreme values were removed from (A) (pre-post; 6.7 to 18.5 and 12.3 to 23.6, respectively) and one subject from the
placebo group was removed from (D) (pre-post; 6.1 to 19.4), but these values were included in the statistical analysis.
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(16–18), a process largely governed by muscle-specific E3 ligases
MAFbx and MuRF-1 (20, 21). We therefore assessed the
expression of these proteins together with the newly discovered
E3 ligase UBR5. However, none of these targets were altered in
response to T treatment. This would either indicate that transient
changes in protein abundance were missed due to the current
study design, or that muscle hypertrophy following T exposure is
not related to changes in UPS-mediated protein breakdown (45).
Regardless, our findings contrast recent work, in which reduced
levels of MAFbx and MuRF-1 were found in hypogonadal men
after they underwent 24-weeks of TRT (22). However,
discrepancies between studies may be explained by differences
in study population (young active women vs old hypogonadal
men) and the dosage provided (10 mg vs 50-100 mg daily).
Beyond this, conflicting findings may also be explained by
endogenous androgen production. As such, it seems that rates
of protein breakdown are suppressed by T provision only if
endogenous concentrations are in the hypogonadal range and
not when subjects are transitioning from the physiological to the
supraphysiological range (9). Given that T levels were raised ~
fivefold above basal levels here, this notion seems to hold true also
for women. It is however important to consider that the
Frontiers in Endocrinology | www.frontiersin.org 8
expression pattern of these E3-ligases might not fully reflect
changes in proteasomal protein breakdown or muscle mass (46).

Another contributor to the overall protein balance in skeletal
muscle is the lysosomal-autophagy pathway (47). Whether
administration of T alters the autophagic process remains poorly
understood and has, to our knowledge, not previously been
investigated in human muscle. Current literature consists
exclusively of animal studies where markers of autophagy have
been assessed in response to surgical castration, which evokes
rapid and profound changes in muscle mass, therefore providing
little relevance to human subjects under free-living conditions.
Nonetheless, castration-induced muscle atrophy is associated with
increased phosphorylation of AMPKThr172 and elevated LC3B-II
content, as well as decreased phosphorylation of ULK1Ser757 and
decreased p62 expression, which together indicate robust
activation of the autophagy pathway (24, 25). The link between
androgen levels and autophagy is further strengthened by the
complete reversal of this effect once androgen levels are restored
following castration (24, 25). In the present study, we did not find
any alterations in total protein expression of AMPK, ULK1 or p62,
which implies that the autophagy-lysosomal pathway did not
mediate changes in muscle size following exogenous T
A B

DC

FIGURE 4 | Protein levels of OPA1 (A), MFN2 (B), FIS1 (C), and DRP1 (D) in the mitochondrial fraction before (black dots) and after the intervention (red dots).
Representative blots for each individual protein target and Porin are shown above each graph. The values presented are means ± SD and individual data points from
22 and 20 individuals (DF 40) in the placebo group and T group, respectively. For illustrative purposes, one subject from the placebo group displaying extreme
values was removed from (A) (pre-post; 6.1 to 19.4), but these values were included in the statistical analysis.
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provision. The present observation also opposes the notion that
this pathway could be involved in the improved capacity to re-
utilize amino acids in the fasted state, as previously observed here
(17, 23). It must however be pointed out, once again, that the
present study does not entail any information on the activation of
this pathway in relation to acute stimuli, i.e., exercise, nor does it
contain data on the transcriptional level. Thus, some aspects of
this pathway with regards to muscle adaptation following T
administration remains unanswered and requires additional study.

Mitochondrial remodeling through increased mitophagy, is
crucial for maintaining a healthy mitochondrial network and
impairments of this process are associated with declines in
muscle size and function (48). During mitophagy, mitochondria
are first separated from each other through fission, then tagged for
removal by specific receptor proteins and later engulfed by
autophagosomes for transport to the lysosome (48, 49).
Interestingly, mice deprived of androgens displayed attenuated
increases in oxidative capacity following chronic exercise, a
phenomenon thought to be related to disrupted BNIP3-mediated
mitophagy (50). While exercise training itself is sufficient to
promote remodeling of the mitochondrial network (51, 52),
preliminary evidence in mice suggest that exercise in combination
with T provision promotes even greater activation of this system
(29). Based on this, we reasoned that previously observed
improvements in muscle oxidative capacity could be explained by
a similar mechanism (26). We therefore assessed if markers of
mitochondrial remodeling were influenced by T exposure.
However, we did not observe any changes in markers associated
with mitophagy or mitochondrial fission on the subcellular level.
There were however some increases of BNIP3 and LC3B-II protein
content (main effect of time), but these changes were not related to
T provision per se and could potentially be related to subtle changes
in subject´s training status, although we find this unlikely since
exercise habits were well-maintained throughout the intervention
(31). In addition, no effects were observed in MFN2 and OPA1
protein levels, two key regulators of mitochondrial fusion shown to
be highly responsive to T exposure in rodent skeletal muscle (29).
However, in this case, conflicting findings are likely due to profound
differences in dosing regimens across species, in which serum T
concentrations were raised 25-100 times above control level in the
previously mentioned study (29).

Despite assessing several well-known regulators of muscle
protein turnover, mitophagy and mitochondrial fission-fusion in
the present study, it still remains to be determined by which
molecular events T administration elicits hypertrophy and
improved mitochondrial quality as we were unable to provide
any clear mechanistic links here. One of the limitations of the
present study is that we only reported chronic effects in muscle
samples collected pre-post intervention. We therefore cannot
exclude out that T administration, 1) transiently altered total
protein abundance, 2) modulated the acute signaling response to
exercise and/or nutrients, 3) influenced these regulating factors
in a muscle fiber-type specific manner, 4) induced changes only
at the transcriptional level. It is also possible that the sample size
in the present study precluded us from detecting small but
biologically relevant changes in total protein levels. To put our
Frontiers in Endocrinology | www.frontiersin.org 9
findings in light of the current literature is difficult as several
inconsistences exist, which is reflective of the large variability
among studies in terms of sex (men vs women), age (old vs
young), endogenous androgens (hypo- vs eugonadal), route of
administration (injections vs transdermal) and length of
treatment. Nonetheless, the present study sheds important
light on the effects of T provision on skeletal muscle in females
and provides insights into their molecular underpinnings.

In summary, improvements in muscle size and oxidative
capacity following 10-weeks of T administration in young women
(4, 26, 31), cannot be explained by changes in protein expression
related to muscle protein turnover or mitochondrial remodeling.
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