Change search
Refine search result
345678 251 - 300 of 367
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 251.
    Nilsson, Johnny
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Adaptability in frequency and amplitude of leg movements during human locomotion at different speeds.1987In: Acta Physiologica Scandinavica, ISSN 0001-6772, E-ISSN 1365-201X, Vol. 129, no 1, p. 107-14Article in journal (Refereed)
    Abstract [en]

    In this study of human locomotion we investigate to what extent the normal frequency and amplitude of leg movements can be modified voluntarily at different constant velocities, and how these modifications are accomplished in terms of changes in duration and length of the support and swing phases of the stride cycle. Eight healthy male subjects performed walking and running on a motor-driven treadmill at speeds ranging from 1.0 to 3.0 m s-1 (walking) and 1.5 to 8.0 m s-1 (running), respectively. At each speed the subjects walked and ran with: normal stride frequency; the highest possible stride frequency, and the lowest possible stride frequency. Time for foot contact was measured with a special pressure transducer system under the sole of each shoe. At all speeds of walking and running it was possible to either increase or decrease the frequency of leg movements; that is, to decrease or increase stride cycle duration. The range of variation decreased with increasing speed. The mean overall stride frequency range was 0.41 (low frequency walk 1.0 m s-1)-3.57 Hz (high-frequency run 1.5 m s-1). Stride length ranged 0.40 (high frequency walk 1.0 m s-1)-5.00 m (low frequency run 6.0 m s-1). At normal frequency the overall ranges of stride frequency and length were 0.83-1.95 Hz and 1.16-4.10 m, respectively. The stride frequency increased with speed in low frequency walking and running (as in normal frequency) and decreased in high frequency, despite the effort to maintain extreme frequencies. Only in high frequency walking could the stride frequency be kept approximately constant.(ABSTRACT TRUNCATED AT 250 WORDS)

  • 252.
    Nilsson, Johnny
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Ground reaction forces at different speeds of human walking and running.1989In: Acta Physiologica Scandinavica, ISSN 0001-6772, E-ISSN 1365-201X, Vol. 136, no 2, p. 217-27Article in journal (Refereed)
    Abstract [en]

    In this study the variation in ground reaction force parameters was investigated with respect to adaptations to speed and mode of progression, and to type of foot-strike. Twelve healthy male subjects were studied during walking (1.0-3.0 m s-1) and running (1.5-6.0 m s-1). The subjects were selected with respect to foot-strike pattern during running. Six subjects were classified as rearfoot strikers and six as forefoot strikers. Constant speeds were accomplished by pacer lights beside an indoor straightway and controlled by means of a photo-electronic device. The vertical, anteroposterior and mediolateral force components were recorded with a force platform. Computer software was used to calculate durations, amplitudes and impulses of the reaction forces. The amplitudes were normalized with respect to body weight (b.w.). Increased speed was accompanied by shorter force periods and larger peak forces. The peak amplitude of the vertical reaction force in walking and running increased with speed from approximately 1.0 to 1.5 b.w. and 2.0 to 2.9 b.w. respectively. The anteroposterior peak force and mediolateral peak-to-peak force increased about 2 times with speed in walking and about 2-4 times in running (the absolute values were on average about 10 times smaller than the vertical). The transition from walking to running resulted in a shorter support phase duration and a change in the shape of the vertical reaction force curve. The vertical peak force increased whereas the vertical impulse and the anteroposterior impulses and peak forces decreased. In running the vertical force showed an impact peak at touch-down among the rearfoot strikers but generally not among the forefoot strikers. The first mediolateral force peak was laterally directed (as in walking) for the rearfoot strikers but medially for the forefoot strikers. Thus, there is a change with speed in the complex interaction between vertical and horizontal forces needed for propulsion and equilibrium during human locomotion. The differences present between walking and running are consequences of fundamental differences in motor strategies between the two major forms of human progression.

  • 253.
    Nilsson, Johnny
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Halbertsma, J
    Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans.1985In: Acta Physiologica Scandinavica, ISSN 0001-6772, E-ISSN 1365-201X, Vol. 123, no 4, p. 457-75Article in journal (Refereed)
    Abstract [en]

    Knowledge of adaptations to changes in speed and mode of progression (walking-running) in human locomotion is important for an understanding of underlying neural control mechanisms and allows a comparison with more detailed animal studies. Leg movements and muscle activity patterns were studied in ten healthy males (19-29 yr) during level walking (0.4-3.0 m X s-1) and running (1.0-9.0 m X s-1) on a motor-driven treadmill. Movements were recorded in the sagittal plane with a Selspot optoelectronic system. Recordings of EMG were made from seven different muscles of one leg by means of surface electrodes. Durations, amplitudes and relative phase relationships of angular displacements and EMG activity were analysed in relation to different phases of the stride cycle (defined by the leg movements). The durations of the entire stride cycle and of the support phase were found to decrease curvilinearly with velocity. Swing and support phase durations were linearly related to cycle duration in walking, and curvilinearly related in running. The characteristic occurrence of double support phases in walking was also seen in very slow running. Support length increased with speed up to about 1.2 m both in walking and running, but was longer in walking at the same velocity. Increases in net angular displacements were largest for hip movements and for knee flexion-extension during the swing phase in running. With increasing velocity a clear shift in relative rectus femoris activity occurred from knee extension to hip flexion. Gastrocnemius lateralis (LG) was co-activated with the other leg extensors prior to foot contact in running, whereas in walking LG was not turned on until later in the support phase. The ankle flexor tibialis anterior had its main peak of activity after touch-down in walking and before touch-down in running. The same basic structure of the stride cycle as in other animals suggests similarities in the underlying neural control. Human speed adaptation is distinguished primarily by an increase in both frequency and amplitude of leg movements and by a possibility of changing between a walking and a running type of movement pattern.

  • 254.
    Nilsson, Johnny
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Tinmark, Fredrik
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Halvorsen, Kjartan
    Arndt, Anton
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Kinematic, kinetic and electromyographic adaptation to speed and resistance in double poling cross country skiing2013In: European Journal of Applied Physiology, ISSN 1439-6319, E-ISSN 1439-6327, Vol. 113, no 6, p. 1385-1394Article in journal (Refereed)
    Abstract [en]

    This study incorporated variations in speed and the horizontal resistance acting upon elite female skiers during double poling (DP) on a treadmill and specifically analyzed biomechanical adaptations to these variations. Whole body kinematics and pole force data were recorded and used to calculate the moment of force acting on the shoulder and elbow joints. Data were obtained with a 3D optoelectronic system using reflective markers at given anatomical landmarks. Forces along the long axis of the right pole were measured with a piezoelectric force transducer. Surface electrodes were used to record EMG activity in the rectus femoris, rectus abdominis, latissimus dorsi and triceps brachii muscles. In a first set of recordings, the participants double poled with zero elevation at five different speeds from 8 to 17 km h−1. In a second set of recordings, horizontal resistance was added by weights (0.4–1.9 kg) attached to a pulley system pulling the skier posteriorly during DP at 14 km h−1. Results showed increasing relative duration of the thrust phase with increasing resistance, but not with speed. Significant kinematic differences occurred with increase in both speed and resistance. The mean (±SD) horizontal force components ranged between 1.7 (±1.3) and 2.8 (±1.1) percent (%) bodyweight (BW) in the speed adaptation and 3.1 (±0.6) and 4.0 (±1.3) % BW in the adaptation to horizontal resistance. Peak muscle activity showed a central to peripheral (proximo-distal) activation sequence. The temporal cycle phase pattern in the adaptation to speed and horizontal resistance differed.

  • 255.
    Nilsson, Johnny
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Tveit, Per
    Eikrehagen, Olav
    Effects of speed on temporal patterns in classical style and freestyle cross-country skiing.2004In: Sports biomechanics / International Society of Biomechanics in Sports, ISSN 1476-3141, Vol. 3, no 1, p. 85-107Article in journal (Refereed)
    Abstract [ar]

    The purpose was to study the adaptation to speed in the temporal patterns of the movement cycle and determine any differences in velocity, cycle rate and cycle length at the maximum speed level in the different classical style and freestyle cross-country skiing techniques. Eight skilled male cross-country skiers were filmed with a digital video camera in the sagittal plane while skiing on a flat cross-country ski track. The skiers performed three classical style techniques the diagonal stride, kick double poling and the double poling technique and four freestyle techniques paddle dance (gear 2), double dance (gear 3), single dance (gear 4) and combiskate (gear 5) at four different self-selected speed levels slow, medium, fast and their maximum. Cycle duration, cycle rate, cycle length, and relative and absolute cycle phase duration of the different techniques at the different speed levels were analysed by means of a video analysis system. The cycle rate in all tested classical and freestyle techniques was found to increase significantly (p < .01) with speed from slow to maximum. Simultaneously, there was a significant decrease in the absolute phase durations of all the investigated skiing techniques. A minor, not significant, change in cycle length, and the significant increase in cycle rate with speed showed that the classical and freestyle cross-country skiing styles are dependent, to a large extent, on an increase in cycle rate for speed adaptation. A striking finding was the constant relative phase duration with speed, which indicates a simplified neural control of the speed adaptation in both cross-country skiing styles. For the practitioner, the knowledge about the importance of increasing cycle frequency rather than cycle length in the speed adaptation can be used to optimise a rapid increase in speed. The knowledge about the decrease in absolute phase duration, especially the thrust phase duration, points to the need for strength and technique training to enable force production at a high cycle rate and skiing speed. The knowledge that the relative phase duration stays constant with speed may be used to simplify the learning of the different cross-country skiing techniques.

  • 256.
    Nilsson, Jonna
    et al.
    Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    Ekblom, Örjan
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology.
    Ekblom, Maria
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Lebedev, Alexander
    Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    Tarassova, Olga
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Moberg, Marcus
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology.
    Lövdén, Martin
    Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
    Acute increases in brain-derived neurotrophic factor in plasma following physical exercise relates to subsequent learning in older adults.2020In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 10, no 1, article id 4395Article in journal (Refereed)
    Abstract [en]

    Multidomain lifestyle interventions represents a promising strategy to counteract cognitive decline in older age. Brain-derived neurotrophic factor (BDNF) is essential for experience-dependent plasticity and increases following physical exercise, suggesting that physical exercise may facilitate subsequent learning. In a randomized-controlled trial, healthy older adults (65-75 years) completed a 12-week behavioral intervention that involved either physical exercise immediately before cognitive training (n = 25; 13 females), physical exercise immediately after cognitive training (n = 24; 11 females), physical exercise only (n = 27; 15 females), or cognitive training only (n = 21; 12 females). We hypothesized that cognition would benefit more from cognitive training when preceded as opposed to followed by physical exercise and that the relationship between exercise-induced increases in peripheral BDNF and cognitive training outcome would be greater when cognitive training is preceded by physical exercise. Greater increases of plasma BDNF were associated with greater cognitive training gains on trained task paradigms, but only when such increases preceded cognitive training (ß = 0.14, 95% CI [0.04, 0.25]). Average cognitive training outcome did not differ depending on intervention order (ß = 0.05, 95% CI [-0.10, 0.20]). The study provides the first empirical support for a time-critical but advantageous role for post-exercise increases in peripheral BDNF for learning at an interindividual level in older adults, with implications for future multidomain lifestyle interventions.

    Download full text (pdf)
    fulltext
  • 257.
    Nolan, Lee
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    A training programme to improve hip strength in persons with lower limb amputation.2012In: Journal of rehabilitation medicine : official journal of the UEMS European Board of Physical and Rehabilitation Medicine, ISSN 1651-2081, Vol. 44, no 3, p. 241-8Article in journal (Refereed)
    Abstract [en]

    OBJECTIVE: To investigate the effect of a 10-week training programme on persons with a lower limb amputation and to determine if this training is sufficient to enable running.

    SUBJECTS: Seven transtibial, 8 transfemoral and 1 bilateral amputee (all resulting from trauma, tumour or congenital) were randomly assigned to a training (n  =8) or control group (n = 8).

    METHODS: Isokinetic hip flexor and extensor strength at 60 and 120º/s and oxygen consumption while walking at 1.0 m/s were tested pre- and post- a 10-week period. The training group followed a twice weekly hip strengthening programme, while the control group continued with their usual activities. Running ability was determined pre-testing, and attempted after post-testing for the training group only.

    RESULTS: The training group increased hip strength and decreased oxygen consumption. Six amputees who were previously unable to run were able to after training. The control group decreased intact limb hip extensor strength.

    CONCLUSION: The training programme is sufficient to improve hip strength and enable running in persons with a lower limb amputation. As hip strength was reduced in those not following the training programme, it is recommended that strength training be undertaken regularly in order to avoid losing limb strength following amputation.

  • 258.
    Nolan, Lee
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Carbon fibre prostheses and running in amputees: a review.2008In: Foot and ankle surgery : official journal of the European Society of Foot and Ankle Surgeons, ISSN 1460-9584, Vol. 14, no 3, p. 125-9Article in journal (Refereed)
    Abstract [en]

    Amputee sport performance has greatly improved over the past 20 years along with the development of carbon fibre prostheses. As the margins between winning and losing become smaller, athletes increasingly rely on prosthetic limb technology to give them an edge over other competitors and break existing records. Originally, the aim of improving prostheses was to try to increase performance by reducing the functional disadvantage of the prosthetic foot compared to the human foot. However, claims have been made recently that not only have the functional disadvantages been redressed, but today's sprint prostheses may provide a mechanical advantage over the human limb. This review will present what is currently known about carbon fibre prostheses and their effect on the running technique of transtibial amputees.

  • 259.
    Nolan, Lee
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Lower limb strength in sports-active transtibial amputees.2009In: Prosthetics and orthotics international, ISSN 0309-3646, E-ISSN 1746-1553, Vol. 33, no 3, p. 230-41Article in journal (Refereed)
    Abstract [en]

    The aim of this study was to compare hip strength in sports-active transtibial (TT) amputees, sedentary TT amputees and sports-active non-amputees. Three 'active' (exercising recreationally at least three times per week) TT amputees, four 'inactive' or sedentary TT amputees and nine 'active' able-bodied persons (AB) underwent concentric and eccentric hip flexion and extension strength testing on both limbs on an isokinetic dynamometer at 60 and 120 degrees /s. Little strength asymmetry was noted between the limbs of the active TT amputees (8% and 14% at 60 and 120 degrees /s, respectively), their residual limb being slightly stronger. Inactive TT amputees demonstrated up to 49% strength asymmetry, their intact limb being the stronger. Active TT amputees demonstrated greater peak hip torques (Nm/kg) for all conditions and speeds compared to inactive TT amputees. Peak hip torques (Nm/kg), were greater in the active TT amputees' residual limb compared to AB. While inactive TT amputees and AB had similar flexion/extension ratios, active TT amputees exhibited a lower ratio indicating overdeveloped hip extensors with respect to their hip flexors. It is not known whether this is due to the demands of sport or exercise with a prosthetic limb, or remaining residual thigh atrophy.

  • 260.
    Nolan, Lee
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Grigorenko, Anatoli
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Balance control: sex and age differences in 9- to 16-year-olds.2005In: Developmental Medicine & Child Neurology, ISSN 0012-1622, E-ISSN 1469-8749, Vol. 47, no 7, p. 449-54Article in journal (Refereed)
    Abstract [en]

    This study investigated sex and age differences in standing balance. Movement of the centre of pressure (COP) was calculated from ground reaction force data collected from a force platform during bipedal stance with eyes open and eyes closed. Three groups of 60 children, with 30 girls and 30 boys in each, were assessed. Mean ages of each group were as follows: 9 years 11 months (standard deviation [SD] 3mo); 12 years 11 months (SD 2mo); and 15 years 11 months (SD 3mo) respectively. Summary sway parameters and frequency domain variables were calculated in the anteroposterior and mediolateral directions. Boys exhibited greater COP movement than girls at 9 to 10 years of age. Age-related 'improvements' in sway occurred in boys, thus some aspects of postural control are still developing after 9 to 10 years of age. As very little age-related difference was seen in girls, boys may lag behind somewhat in terms of developing postural control. Thus there is a need to study the sexes separately when investigating balance in children.

  • 261.
    Nolan, Lee
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Lees, Adrian
    The influence of lower limb amputation level on the approach in the amputee long jump.2007In: Journal of Sports Sciences, ISSN 0264-0414, E-ISSN 1466-447X, Vol. 25, no 4, p. 393-401Article in journal (Refereed)
    Abstract [en]

    In this study, we investigated the adjustments to posture, kinematic and temporal characteristics of performance made by lower limb amputees during the last few strides in preparation for long jump take-off. Six male unilateral trans-femoral and seven male unilateral trans-tibial amputees competing in a World Championships final were filmed in the sagittal plane using a 100-Hz digital video camera positioned so that the last three strides to take-off were visible. After digitizing using a nine-segment model, a range of kinematic variables were computed to define technique characteristics. Both the trans-femoral and trans-tibial athletes appeared to achieve their reduction in centre of mass during the flight phase between strides, and did so mainly by extending the flight time by increasing stride length, achieved by a greater flexion of the hip joint of the touch-down leg. The trans-tibial athletes appeared to adopt a technique similar to that previously reported for able-bodied athletes. They lowered their centre of mass most on their second last stride (-1.6% of body height compared with -1.4% on the last stride) and used a flexed knee at take-off on the last stride, but they were less able to control their downward velocity at touch-down (-0.4 m x s(-1)). Both this and their restricted approach speed (8.9 m x s(-1) at touch-down), rather than technique limitations, influenced their jump performance. The trans-femoral athletes lowered their centre of mass most on the last stride (-2.3% of body height compared with -1.6% on the second last stride) and, as they were unable to flex their prosthetic knee sufficiently, achieved this by abducting their prosthetic leg during the support phase, which led to a large downward velocity at touch-down (-0.6 m x s(-1)). This, combined with their slower approach velocity (7.1 m x s(-1) at touch-down), restricted their performance.

  • 262.
    Nolan, Lee
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Patritti, Benjamin L
    The take-off phase in transtibial amputee high jump.2008In: Prosthetics and orthotics international, ISSN 1746-1553, Vol. 32, no 2, p. 160-71Article in journal (Refereed)
    Abstract [en]

    An analysis of the take-off technique in transtibial amputee high jump was performed on two athletes (both using intact limb take-off) competing in the high jump finals of the 2004 Paralympic Games. Two digital video cameras were used to film the event with the data later digitized and reconstructed using standard 3D direct linear transformation (DLT) procedures. Some similarities with non-amputee high jump technique were noted in that centre of mass height was low at touch-down (TD), there was a similar magnitude of negative vertical velocity at TD, and most of the vertical velocity generated occurred in the first half of the take-off phase. However, both transtibial amputee athletes exhibited a slower horizontal approach velocity, a lower positive vertical take-off velocity, a more upright position at touch-down and a greater range of motion of the hip throughout the take-off phase compared to what is known about non-amputee high jump technique. These differences may be associated with constraints of taking off from the prosthetic limb on the previous step, resulting in having to adopt a different posture at touch-down compared to non-amputees. Understanding transtibial amputee high jump technique and the differences compared to what is known about non-amputee technique has implications for coaching and improving performance in prosthetic sport.

  • 263.
    Nolan, Lee
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Patritti, Benjamin L
    Simpson, Kathy J
    A biomechanical analysis of the long-jump technique of elite female amputee athletes.2006In: Medicine & Science in Sports & Exercise, ISSN 0195-9131, E-ISSN 1530-0315, Vol. 38, no 10, p. 1829-35Article in journal (Refereed)
    Abstract [en]

    PURPOSE: The purpose of this study was to investigate whether female lower-limb amputees conform to the established long-jump model and to compare the kinematics of the approach and take-off phases for elite female transfemoral and transtibial amputee long jumpers. METHODS: Eight female transfemoral and nine female transtibial amputee athletes were videotaped (sagittal plane movements at 50 Hz) from third-to-last step to take-off during the 2004 Paralympic Games long-jump finals. After digitizing and reconstruction of 2D coordinates, key variables were calculated at each stride and during contact with the take-off board. Additionally, approach speed during the run-up of each jump was recorded (100 Hz) using a laser Doppler device (LDM 300 C Sport, Jenoptik Laser, Jena, Germany). RESULTS: The transfemoral amputees had a consistently higher center of mass height on the last three steps before take-off than the transtibial amputees. However, at touch-down onto the take-off board, they lowered their center of mass excessively so that from touch-down to take-off, they were actually lower than the transtibial amputees. This resulted in a greater negative vertical velocity at touch-down and may have inversely affected their jump performance. CONCLUSION: Female transtibial athletes conformed to the long-jump model, although adaptations to this technique were displayed. Female transfemoral athletes, however, exhibited no relationship between take-off speed and distance jumped, which may be attributable to their excessive lowering of their center-of-mass height at touch-down onto the take-off board. It is recommended that coaches and athletes proceed with caution when trying to replicate techniques used by able-bodied athletes because adaptations to the constraints of a prosthesis should be considered.

  • 264.
    Nolan, Lee
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Patritti, Benjamin L
    Harvard Medical School.
    Stana, Laura
    University of Queensland.
    Tweedy, Sean M
    University of Queensland.
    Is increased residual shank length a competitive advantage for elite transtibial amputee long jumpers?2011In: Adapted Physical Activity Quarterly, ISSN 0736-5829, E-ISSN 1543-2777, Vol. 28, p. 267-276Article in journal (Refereed)
    Abstract [en]

    The purpose of this study was to evaluate the extent to which residual shank length affects long jump performance of elite athletes with a unilateral transtibial amputation. Sixteen elite, male, long jumpers with a transtibial amputation were videoed while competing in major championships (World Championships 1998, 2002 and Paralympic Games, 2004). The approach, take-off, and landing of each athlete's best jump was digitized to determine residual and intact shank lengths, jump distance, and horizontal and vertical velocity of center of mass at touchdown. Residual shank length ranged from 15 cm to 38 cm. There were weak, nonsignificant relationships between residual shank length and (a) distance jumped (r = 0.30), (b) horizontal velocity (r = 0.31), and vertical velocity (r = 0.05). Based on these results, residual shank length is not an important determinant of long jump performance, and it is therefore appropriate that all long jumpers with transtibial amputation compete in the same class. The relationship between residual shank length and key performance variables was stronger among athletes that jumped off their prosthetic leg (N = 5), and although this result must be interpreted cautiously, it indicates the need for further research.

  • 265.
    Nooijen, Carla F J
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences.
    Blom, Victoria
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Sport Psychology research group.
    Ekblom, Örjan
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology.
    Ekblom, Maria
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Kallings, Lena
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology.
    Improving office workers' mental health and cognition: a 3-arm cluster randomized controlled trial targeting physical activity and sedentary behavior in multi-component interventions2019In: BMC Public Health, ISSN 1471-2458, E-ISSN 1471-2458, Vol. 19, article id 266Article in journal (Refereed)
    Abstract [en]

    Background

    Physically inactive and sedentary lifestyles are negatively related to both mental health and cognition. For office-workers, who spend two-thirds of their workday sitting, it is important to improve these lifestyles. The aim of this study is to assess the effectiveness of multi-component interventions, incorporating individual, environmental and organizational changes, to increase physical activity or reduce sedentary behavior among office-workers in order to improve mental health and cognition.

    Methods

    a 3-arm, clustered randomized controlled trial (RCT) with waiting list control group amongst adult office-workers of two large Swedish companies. Cluster teams will be randomized into 6-month interventions or to a passive waiting list control group which will receive the allocated intervention with a 6-month delay. Two multicomponent interventions will be studied of which one focuses on improving physical activity and the other on reducing sedentary behavior. Both interventions include 5 sessions of motivational counselling. In the physical activity intervention persons also get access to a gym and team leaders will organize lunch walks and encourage to exercise. In the sedentary behavior intervention standing- and walking meetings will be implemented and team leaders will encourage to reduce sitting. The recruitment target is 110 office-workers per arm (330 in total). Measurements will be repeated every 6months for a total intended duration of 24months. Proximal main outcomes are physical activity measured with accelerometers and sedentary behavior with inclinometers. Distal outcomes are self-reported mental health and a cognition test battery. Additional outcomes will include cardiovascular fitness, body composition, sleep, self-reported physical activity and sedentary behavior, other health habits, physical health, and working mechanisms from blood samples and questionnaires.

    Discussion

    This cluster RCT will contribute to the currently available evidence by comparing the effectiveness of multi-component interventions targeting physical activity or sedentary behavior with the end goal of improving mental health and cognition. This study is strong in its cluster randomized design, numerous objective outcome measures and long-term follow-up. The exact content of the interventions has been defined by combining theory with results from a larger research project as well as having a continuous dialogue with the involved companies.

    Download full text (pdf)
    fulltext
  • 266.
    Nooijen, Carla F J
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences. Karolinska Institutet.
    Kallings, Lena
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology.
    Blom, Victoria
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Sport Psychology research group. Karolinska Institutet.
    Ekblom, Örjan
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology.
    Forsell, Yvonne
    Karolinska Institutet.
    Ekblom, Maria
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control. Karolinska Institutet.
    Common Perceived Barriers and Facilitators for Reducing Sedentary Behaviour among Office Workers.2018In: International Journal of Environmental Research and Public Health, ISSN 1661-7827, E-ISSN 1660-4601, Vol. 15, no 4, article id E792Article in journal (Refereed)
    Abstract [en]

    Qualitative studies identified barriers and facilitators associated with work-related sedentary behaviour. The objective of this study was to determine common perceived barriers and facilitators among office workers, assess subgroup differences, and describe sedentary behaviour. From two Swedish companies, 547 office workers (41 years (IQR = 35–48), 65% women, 66% highly educated) completed questionnaires on perceived barriers and facilitators, for which subgroup differences in age, gender, education, and workplace sedentary behaviour were assessed. Sedentary behaviour was measured using inclinometers (n = 311). The most frequently reported barrier was sitting is a habit (67%), which was reported more among women than men (X2 = 5.14, p = 0.03) and more among highly sedentary office workers (X2 = 9.26, p < 0.01). The two other most reported barriers were that standing is uncomfortable (29%) and standing is tiring (24%). Facilitators with the most support were the introduction of either standing- or walking-meetings (respectively 33% and 29%) and more possibilities or reminders for breaks (31%). The proportion spent sedentary was 64% at the workplace, 61% on working days, and 57% on non-working days. This study provides a detailed understanding of office workers’ ideas about sitting and means to reduce sitting. We advise to include the supported facilitators and individualized support in interventions to work towards more effective strategies to reduce sedentary behaviour.

    Download full text (pdf)
    fulltext
  • 267.
    Nooijen, Carla F J
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences.
    Kallings, Lena
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology.
    Blom, Victoria
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Sport Psychology research group.
    Ekblom, Örjan
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology.
    Forsell, Yvonne
    Karolinska Institutet.
    Ekblom, Maria
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Common perceived barriers and facilitators for reducing sedentary behaviour among office-workers2018In: Journal of Physical Activity & Health, Volume 15, Issue 10, Pages S94-S95 Supplement 1, Canadian Consortium on Human Security, 2018, Vol. 15, no 10, p. S94-S95Conference paper (Other academic)
  • 268.
    Nooijen, Carla F J
    et al.
    Department of Public Health Sciences, Karolinska Institutet.
    Möller, Jette
    Department of Public Health Sciences, Karolinska Institutet.
    Forsell, Yvonne
    Department of Public Health Sciences, Karolinska Institutet.
    Ekblom, Maria
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Galanti, Maria R
    Department of Public Health Sciences, Karolinska Institutet.
    Engström, Karin
    Department of Public Health Sciences, Karolinska Institutet.
    Do unfavourable alcohol, smoking, nutrition and physical activity predict sustained leisure time sedentary behaviour? A population-based cohort study.2017In: Preventive Medicine, ISSN 0091-7435, E-ISSN 1096-0260, Vol. 101, p. 23-27, article id S0091-7435(17)30182-2Article in journal (Refereed)
    Abstract [en]

    Comparing lifestyle of people remaining sedentary during longer periods of their life with those favourably changing their behaviour can provide cues to optimize interventions targeting sedentary behaviour. The objective of this study was to determine lifestyle predictors of sustained leisure time sedentary behaviour and assess whether these predictors were dependent on gender, age, socioeconomic position and occupational sedentary behaviour. Data from a large longitudinal population-based cohort of adults (aged 18-97years) in Stockholm responding to public health surveys in 2010 and 2014 were analysed (n=49,133). Leisure time sedentary behaviour was defined as >3h per day of leisure sitting time e.g. watching TV, reading or using tablet. Individuals classified as sedentary at baseline (n=9562) were subsequently categorized as remaining sedentary (n=6357) or reduced sedentary behaviour (n=3205) at follow-up. Lifestyle predictors were unfavourable alcohol consumption, smoking, nutrition, and physical activity. Odds ratios (OR) and corresponding 95% Confidence Intervals (CI) were calculated, adjusting for potential confounders. Unfavourable alcohol consumption (OR=1.22, CI:1.11-1.34), unfavourable candy- or cake consumption (OR=1.15, CI:1.05-1.25), and unfavourable physical activity in different contexts were found to predict sustained sedentary behaviour, with negligible differences according to gender, age, socioeconomic position and occupational sedentary behaviour. People with unfavourable lifestyle profiles regarding alcohol, sweets, or physical activity are more likely to remain sedentary compared to sedentary persons with healthier lifestyle. The impact of combining interventions to reduce leisure time sedentary behaviour with reducing alcohol drinking, sweet consumption and increasing physical activity should be tested as a promising strategy for behavioural modification.

    Download full text (pdf)
    fulltext
  • 269.
    Nordlund Ekblom, Maria M
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Improvements in dynamic plantar flexor strength after resistance training are associated with increased voluntary activation and V: M ratio.2010In: Journal of applied physiology, ISSN 8750-7587, E-ISSN 1522-1601, Vol. 109, no 1, p. 19-26Article in journal (Refereed)
    Abstract [en]

    The aim of this study was to investigate if, and via what mechanisms, resistance training of the plantar flexor muscles affects voluntary activation during maximal voluntary eccentric and concentric muscle actions. Twenty healthy subjects were randomized into a resistance training group (N = 9) or a passive control group (N = 11). Training consisted of 15 sessions of unilateral mainly eccentric plantar flexor exercise over a 5-week period. During pre- and post-training testing, dynamic plantar flexor strength was measured and voluntary activation was calculated using the twitch interpolation technique. The Soleus H-reflex was used to assess motoneurone excitability and presynaptic inhibition of Ia-afferents whereas the Soleus V-wave to test for both changes in presynaptic inhibition of Ia-afferents and changes in supraspinal inputs to the motoneurone pool. H-reflexes, V-waves, supramaximal M-waves and twitches were evoked as the foot was moved at 5 degrees (.)s(-1) through an angle of 90 degrees during passive ankle rotations (passive H and M) and during maximal voluntary concentric and eccentric plantar flexion (MVC H, M and V-wave). Training induced significant improvements in plantar flexor strength and voluntary activation during both concentric and eccentric maximal voluntary actions. Soleus passive and MVC H:M ratios remained unchanged after training, whereas the Soleus V:M ratio was increased during both concentric and eccentric contractions after training. No change was seen in the control group for any of the parameters. The enhanced voluntary strength could be attributed partly to an increase in voluntary activation induced by eccentric training. Since the passive and MVC H:M ratios remained unchanged, the increase in activation is probably not due to decreased presynaptic inhibition. The increased V:M ratio for both action types indicate, that increased voluntary drive from supraspinal centers and/or modulation in afferents other than Ia:s, may have contributed to such an increase in voluntary activation.

  • 270.
    Nordlund Ekblom, Maria M
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Eriksson, Martin
    STH, KTH.
    Concurrent EMG feedback acutely improves strength and muscle activation.2012In: European Journal of Applied Physiology, ISSN 1439-6319, E-ISSN 1439-6327, Vol. 112, no 5, p. 1899-1905Article in journal (Refereed)
    Abstract [en]

    The purpose of this study was to investigate the acute effects of electromyographic (EMG) feedback on muscle activation and strength during maximal voluntary concentric and eccentric muscle actions. 15 females performed two sets of three lengthening and three shortening maximal voluntary isokinetic knee extensions at 20° s(-1) over 60° range of motion. After the first set, subjects were randomized to either a control group (n = 8) or a feedback group (n = 7). In the second set, the control group performed tasks identical to those in the first set, whereas the feedback group additionally received concurrent visual feedback of the EMGrms from Vastus Medialis (VM). Knee extensor strength and EMG activation of VM, Vastus lateralis (VL) and hamstrings (HAM) were measured during the MVCs. Analyses were performed separately in a 1 s preactivation phase, a 1 s initial movement phase and a 1 s late movement phase. EMG feedback was associated with significantly higher knee extensor strength in all phases (20.5% p < 0.05, 18.2% p < 0.001 and 19% p < 0.001, respectively) for the eccentric MVCs and in the preactivation phase (16.3%, p < 0.001) and initial movement phases (7.2%, p < 0.05) for concentric MVCs. EMG feedback from VM further improved activation in VM and HAM but not VL. These findings suggested that concurrent visual EMG feedback from VM could acutely enhance muscle strength and activation. Before recommending implementation of EMG feedback in resistance training paradigms, the feedback parameters needs to be optimized and its long-term effects needs to be scrutinized.

  • 271.
    Nordlund Ekblom, Maria M
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Cresswell, Andrew G
    Central and peripheral contributions to fatigue in relation to level of activation during repeated maximal voluntary isometric plantar flexions.2004In: Journal of applied physiology, ISSN 8750-7587, E-ISSN 1522-1601, Vol. 96, no 1, p. 218-25Article in journal (Refereed)
    Abstract [en]

    This study aimed to investigate central and peripheral contributions to fatigue during repeated maximal voluntary isometric plantar flexions (MVCs). Changes in joint torque, level of activation (LOA), resting twitch amplitude (RT), electromyographic signals (EMG), and presynaptic inhibition of Ia afferents were investigated during 9 bouts of 10 MVCs. MVCs lasted for 2 s and were separated by 1 s. The interval between bouts was 10 s. Electrical stimulation was applied to the tibial nerve; at rest to evoke RTs, M waves, and two (1.5-s interval) H reflexes; with the soleus EMG at 30% of that during MVC to evoke M waves and two H reflexes; and during MVCs to measure LOA. Over the nine bouts, LOA decreased by 12.6% and RT by 16.2%. EMG root mean square during MVCs remained unchanged for the soleus and tibialis anterior muscles, but it decreased for medial gastrocnemius. Peripheral fatigue (decrease in RT) was positively correlated to LOA, whereas central fatigue (decrease in LOA) was not. Depression of both H reflexes suggests that presynaptic inhibition after the first bout was partly induced by homosynaptic postactivation depression of the Ia terminal. The H-reflex-to-M-wave ratio increased with fatigue in both passive and active states, with no change in the ratio of the second H reflex to the first, thereby indicating a decrease of presynaptic inhibition during fatigue. The results indicate that both central and peripheral mechanisms contributed to the fatigue observed during repeated MVCs and that the development of peripheral fatigue was influenced by the level of voluntary activation and initial plantar flexor torque.

  • 272.
    Nordlund Ekblom, Maria M
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Cresswell, Andrew G
    Conditioning Ia-afferent stimulation reduces the soleus Hoffman reflex in humans when muscle spindles are assumed to be inactive.2004In: Neuroscience Letters, ISSN 0304-3940, E-ISSN 1872-7972, Vol. 366, no 3, p. 250-3Article in journal (Refereed)
    Abstract [en]

    Despite higher neural activation during active as compared to passive muscle shortening, Hoffman reflexes (H-reflexes) are similar. This may be explained by homosynaptic post-activation depression (HPAD) of Ia-afferents being present during active shortening. Accordingly, it was investigated whether conditioning electrical stimulation of the tibial nerve reduced the H-reflex less during active than passive shortening. The effects of two conditioning modes (0.2 and 1 Hz) were compared to a control mode without conditioning. H-reflexes and M-waves were elicited as the ankle passed 90 degrees with the soleus muscle undergoing passive or active (20% MVC) lengthening or shortening. Conditioning had no effect during active shortening. In contrast, during passive shortening, the H:M of the 1 Hz mode was significantly less than that of the 0.2 Hz and control modes. In lengthening, H:M was unaffected by conditioning. These findings support that HPAD reduces the synaptic efficacy of Ia-afferents during active shortening, active and passive lengthening, but not passive shortening.

  • 273.
    Nordlund Ekblom, Maria M
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Cresswell, Andrew G
    Variations in the soleus H-reflex as a function of activation during controlled lengthening and shortening actions.2002In: Brain Research, ISSN 0006-8993, E-ISSN 1872-6240, Vol. 952, no 2, p. 301-7Article in journal (Refereed)
    Abstract [en]

    The effect of soleus activation on the soleus H-reflex was investigated during controlled lengthening and shortening of the plantar flexor muscles. Maximal H-reflexes and M-waves were evoked at the same muscle length (ankle angle 90 degrees ) during lengthening and shortening (ankle angular velocity 5 degrees s(-1)) with soleus either passive or with its electromyographic activity at 10, 20 and 30% of that during a maximal voluntary isometric plantar flexion. In passive trials, the H(MAX):M(MAX) ratio during lengthening was lower than during shortening. In active trials at 10 and 20%, the H(MAX):M(MAX) ratio tended to be lower during lengthening than shortening. Within the active trials, H(MAX):M(MAX) ratios were not different between the three levels of soleus activation, neither for lengthening nor shortening actions. When all active trials were pooled, the lengthening H(MAX):M(MAX) ratio was significantly lower than the shortening one. In lengthening, the H(MAX):M(MAX) ratio increased in the active with respect to the passive condition, whereas no change occurred in active with respect to the passive shortening. These results indicate action type specificity in the way the Ia-excitatory effect is modulated as the soleus muscle is voluntarily activated.

  • 274.
    Nordlund Ekblom, Maria
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Strength training effects of whole-body vibration?2007In: Scandinavian Journal of Medicine and Science in Sports, ISSN 0905-7188, E-ISSN 1600-0838, Vol. 17, no 1, p. 12-7Article in journal (Refereed)
    Abstract [en]

    Whole-body vibration (WBV) has been suggested to have a beneficial effect on muscle strength. Manufacturers of vibration platforms promote WBV as an effective alternative or complement to resistance training. This study aimed to review systematically the current (August 2005) scientific support for effects of WBV on muscle strength and jump performance. MEDLINE and SPORT DISCUS were searched for the word vibration in combination with strength or training. Twelve articles were included in the final analysis. In four of the five studies that used an adequate design with a control group performing the same exercises as the WBV group, no difference in performance improvement was found between groups, suggesting no or only minor additional effects of WBV as such. Proposed neural mechanisms are discussed.

  • 275.
    Nordlund, Maria M.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    On spinal mechanisms for reflex control in man: modulation of Ia-afferent excitation with changes in muscle length, activation level and fatigue2004Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    To control muscle force, neural activation has to take alterations in muscle mechanics into account. This thesis assesses modulations in excitatory efficacy of Ia-afferents during muscle length changes at different levels of voluntary activation and during fatigue. Excitatory efficacy of Iaafferents was inferred from modulations in the Hoffmann reflex (Hreflex) elicited in the triceps surae. The H-reflex is affected by the excitability of the motoneurones, as well as presynaptic inhibition of Iaafferents. The latter can be induced by primary afferent depolarization (PAD) and homosynaptic post activation depression (HPAD) within the terminal. The H-reflex was depressed with increasing velocities of passive plantar flexor lengthening and was smaller during passive muscle lengthening than when the muscles were isometric or undergoing passive shortening. The depression was probably induced by a peripheral mechanism since it was present at a latency too short for supra-spinal involvement. The rapid modulation and the velocity dependency suggest that during muscle lengthening, muscle spindle firing may have induced HPAD in the Ia-terminal. The H-reflex increased from passive to active lengthening, whereas it remained unchanged from passive to active shortening. Despite similar neural activation during the active tasks, the H-reflex was lower during muscle lengthening than shortening, indicating more presynaptic inhibition during lengthening. When Iaafferents were conditioned by electrical stimulation to emulate muscle spindle activation, the H-reflex was depressed only during passive shortening. No depression of the H-reflex during active shortening implies that HPAD was already present in the active condition. The lack of increase in the H-reflex from passive to active shortening may thus be caused by muscle spindle activation reducing the efficacy of Ia-excitation in the active muscle via HPAD. During fatigue from maximal voluntary intermittent isometric plantar flexor actions, both central and peripheral fatigue developed. The stronger the subjects and the higher their ability to fully activate the plantar flexors, the greater was the amount of peripheral fatigue. After the first bout, presynaptic inhibition had increased, most likely due to HPAD. During the fatigue protocol, the amount of presynaptic inhibition decreased slightly, either due to decreased PAD-mediated inhibition or due to less HPAD as a result of reduced muscle spindle firing. Having two separate mechanisms, independently capable of modulating the efficacy of Iaafferents, provides the central nervous system with a high flexibility for regulating motoneurone excitability.

  • 276.
    Norrbrink, Cecilia
    et al.
    Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital, Stockholm.
    Lindberg, Thomas
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Wahman, Kerstin
    Department of Neurobiology, Care Sciences and Society (NVS), Division of Neurorehabilitation, Karolinska Institutet.
    Bjerkefors, Anna
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Effects of an exercise programme on musculoskeletal and neuropathic pain after spinal cord injury - results from a seated double-poling ergometer study2012In: Spinal Cord, ISSN 1362-4393, E-ISSN 1476-5624, Vol. 50, no 6, p. 457-461Article in journal (Refereed)
    Abstract [en]

    OBJECTIVES: To assess pain relieving effects of an intensive exercise programme on a seated double-poling ergometer in individuals with spinal cord injury (SCI).

    SETTING: Stockholm, Sweden.

    METHODS: A total of 13 wheelchair-dependent individuals with a thoracic or lumbar SCI were recruited to a 10-week training period (three times weekly) assessing the effects of regular training on upper-body strength, aerobic and mechanical power, and crossover effects on functional performance, as well as cardiovascular risk factors. Eight of the participants reported pain and were included in this exploratory pain protocol and assessed using the International SCI Basic Pain Data set, the Wheelchair Users' Shoulder Pain Index and International SCI Quality of Life Basic Data set.

    RESULTS: For those with neuropathic pain, median pain intensity ratings decreased from 5 on a 0-10 numerical rating scale at base-line to 3 at the end of study, and four of seven participants reported an improvement on the Patient Global Impression of Change scale. For those with musculoskeletal pain (n = 5), median pain intensity ratings improved from 4 at baseline to 0 at the end of study. All but one rated no musculoskeletal pain at all at the end of study and number of days with pain per week decreased from 5.5 to 0.7. None of the participants developed pain, because of overuse during the training period and few reported unwanted side effects.

    CONCLUSION: Considering its promising effects and safety, an intensive exercise programme can be tried for treating musculoskeletal pain and also neuropathic pain following SCI.

  • 277.
    Oddsson, Kristjan
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Integrated Sports Massage Therapy2011In: Integrated Sports Massage Therapy, Elsevier Ltd. , 2011, p. 181-205Chapter in book (Other academic)
  • 278.
    Oddsson, Kristjan
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Vad är balans?: Balansförmåga hos barn i skolåldern2012Independent thesis Advanced level (degree of Master (One Year)), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Aim

    The specific questions in the theoretic part were:

    • What is contained in the terms "balance and balance skill" and how can this skill be measured?

    The specific questions in the empirical part were:

    • How does balance skill in different age categories of children correlate with biological and physiological parameters such as age, gender, body height, weight and level of physical activity?

    Methods

    Literature search based on books and scientific papers related to the questions posed above. Selection was made at libraries and on–line through "Pubmed". Specific search words were used. Data collected during the SIH-project, including balance tests of approximately 1700 children 10-, 13- and 16 years old, were used for the empirical part of the project.

    Results

    The literature search concluded that there is little consensus about terms such as "balance" and "balance skill". Several scientific disciplines have "their own" definition of these terms depending on whether the interpretation is purely mechanical/biomechanical, neurophysiological or from a more behaviouristic point of view. There are a number of clinical/functional as well as more "lab based" test procedures of balance function that are considered to be reliable. The empirical study showed that balance skill varies in school children 10-, 13- and 16 years of age such that the older children display better balance skills that the younger ones. There was no effect of gender on balance skill. Overweight and obese children display lower balance skill than those of normal body weight. Body height appears to have little influence on balance skill. Children with high level of physical activity seem to display better balance skills than more inactive ones.

    Conclusion

    Definitions of terms used in balance related research have not been standardized and are therefore both difficult to interpret and to implement. Balance skill in children correlates with age, body weight and level of physical activity.

    Download full text (pdf)
    fulltext
  • 279. Oddsson, L I
    et al.
    Persson, T
    Cresswell, Andrew G
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Interaction between voluntary and postural motor commands during perturbed lifting.1999In: Spine, ISSN 0362-2436, E-ISSN 1528-1159, Vol. 24, no 6, p. 545-52Article in journal (Refereed)
    Abstract [en]

    STUDY DESIGN: An experimental study was conducted to evaluate the effect of an unexpected postural perturbation during a lifting task. OBJECTIVES: To investigate electromyographic responses in the erector spinae to a postural perturbation, simulating slipping, during an ongoing voluntary lifting movement. It was hypothesized that specific combinations of voluntary movement and postural perturbation present a situation in which injury caused by a rapid switch between conflicting motor commands can occur. SUMMARY OF BACKGROUND DATA: Studies of postural perturbations have mainly focused on behavior during static tasks such as quiet, upright standing. To date, there are no published studies of the effect of a perturbation during an ongoing voluntary lifting movement. METHODS: Subjects standing on a movable platform were exposed to random perturbations while lifting a 20-kg load. Muscle activity was recorded from flexor and extensor muscles of the trunk and hip. Trunk flexion angle in the sagittal plane was recorded with a video system. RESULTS: Perturbations forward were followed by an increased activity in erector spinae superimposed on the background activation present during the lift, indicating that both the voluntary and postural motor programs caused an activation of erector spinae. During backward perturbation, however, there was a sudden cessation of erector spinae activity followed by an extended period of rapid electromyographic amplitude fluctuations while the trunk was flexing, indicating an eccentric contraction of the erector spinae. CONCLUSIONS: This erratic behavior with large electromyographic amplitude fluctuations in the erector spinae after a backward slip during lifting may indicate a rapid switch between voluntary and postural motor programs that require conflicting functions of the back muscles. This may cause rapid force changes in load-carrying tissue, particularly in those surrounding the spine, thus increasing the risk of slip-and-fall-related back injuries.

  • 280. Oddsson, L
    et al.
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Fast voluntary trunk flexion movements in standing: motor patterns.1987In: Acta Physiologica Scandinavica, ISSN 0001-6772, E-ISSN 1365-201X, Vol. 129, no 1, p. 93-106Article in journal (Refereed)
    Abstract [en]

    The electromyographical (EMG) activity was studied during voluntary flexion movements of the trunk in erect standing man. The movements were performed at maximal velocity with successively increasing amplitude to cover the whole range of motion. The EMG activity was recorded from agonist-antagonist pairs of muscles at the ankle, knee, hip and trunk. The angular displacements at the corresponding joints were recorded using a Selspot optoelectronic system. The duration of initiating activity in prime movers (rectus abdominis and rectus femoris) as well as time to onset of activity in muscles braking the primary movement (erector spinae, gluteus maximus and hamstrings) were highly correlated with amplitude, duration, peak velocity and time to peak velocity of the movement (r = 0.59-0.91). The corresponding correlations for peak acceleration and deceleration of the movement were low (r = 0.03-0.38), indicating that acceleration and deceleration of a movement was not coded in the temporal aspects of the EMG. Onset of activity in rectus abdominis and rectus femoris as well as an early appearing burst of activity in vastus lateralis were invariant in relation to start of movement over the whole movement range. In the initial phase of a fast trunk flexion, activity in tibialis anterior appeared successively earlier with increasing movement amplitude. This resulted in a changed order of activation for the muscles from proximal to distal (rectus abdominis first) to distal to proximal (tibialis anterior first). Two different forms of associated postural adjustments are present during a fast trunk flexion, one early fast knee flexion and a later slower angle extension. Prior to knee flexion, no activity was recorded from muscles flexing at the knee implying that some other force must create a flexing torque around the knee. It is suggested that activity in rectus abdominis initiating the primary movement also initiates knee flexion through the upward pulling of pelvis. This would be possible since rectus femoris stabilizes the pelvis in relation to the leg, allowing the force in rectus abdominis to be transmitted below the hip joint and act extending around the ankle joint. However, when tibialis anterior is activated it stabilizes the shank which in turn will cause a knee flexion controlled by a lengthening contraction in vastus lateralis. During the subsequent ankle extension activity appears in lateral gastrocnemius and soleus causing the associated postural adjustment at the ankle. It can be concluded that activation of postural muscles prior to prime mover muscles is not always necessary.(ABSTRACT TRUNCATED AT 400 WORDS)

  • 281. Oddsson, L
    et al.
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Fast voluntary trunk flexion movements in standing: primary movements and associated postural adjustments.1986In: Acta Physiologica Scandinavica, ISSN 0001-6772, E-ISSN 1365-201X, Vol. 128, no 3, p. 341-9Article in journal (Refereed)
    Abstract [en]

    Movement patterns were studied during fast voluntary forward flexions of the trunk from an erect standing position. Three healthy subjects performed three series of six consecutive trunk flexions at maximum velocity and with successively increasing amplitude, covering a major part of the range of motion (range for all subjects: 13-97 degrees). Angular displacements of the trunk, hip, knee and ankle were measured together with the tilt of the pelvis and the flexion of the spine using a Selspot optoelectronic system. Trunk flexion was the result of a simultaneous forward pelvic tilt and flexion of the spine. For trunk movements up to 55 degrees, spine flexion dominated the movement, whereas for larger movements a major part of the amplitude was caused by pelvic tilt. During flexion of the trunk a simultaneous hip flexion and ankle extension was seen. At the knee there was an initial flexion and a subsequent extension. The net amplitude of the knee flexion showed a negative correlation with net trunk flexion amplitude for movements up to 50 degrees, whereas for larger amplitudes the correlation was positive. Time from onset of the trunk movement to peak knee flexion showed a weak correlation to net trunk flexion amplitude (r = 0.34) whereas the corresponding correlation was higher for pelvic tilt, spine flexion, hip flexion, ankle extension, and knee extension (r = 0.60-0.91). Each successive trial during a series of trunk movements was started from an increasing degree of knee flexion. This gradual adaptation was also present when successive trunk flexions were performed with constant movement amplitude.(ABSTRACT TRUNCATED AT 250 WORDS)

  • 282. Oddsson, L
    et al.
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Task specificity in the control of intrinsic trunk muscles in man.1990In: Acta Physiologica Scandinavica, ISSN 0001-6772, E-ISSN 1365-201X, Vol. 139, no 1, p. 123-31Article in journal (Refereed)
    Abstract [en]

    The human trunk is a complex mechanical system comprised of large and small segments interconnected with several layers of muscles. An accurate control of this system is important during a variety of everyday tasks such as voluntary movements of the trunk, walking and running. This study was designed to investigate the interaction between muscles controlling the pelvis and the trunk during a variety of movements requiring a finely tuned coordination. Four subjects carried out seven different forms of fast oscillatory movements of the pelvis and trunk in the sagittal and transverse planes. Electromyographical activity (EMG) was recorded with surface electrodes from the abdominal muscles rectus abdominis (RA), obliquus externus (OE), obliquus internus (OI), and erector spinae (ES), from the hip flexor muscle rectus femoris (RF), the hip extensor muscle gluteus maximus (GM) and from the hip extensor/knee flexor muscles of the hamstrings group (HAM). Movements were recorded with an optoelectronic system (Selspot). The results indicate that during spontaneous flexion-extension movements of the trunk there was a basic alternating activation between a pure flexor (RF-RA-OE-OI) and an extensor synergy (ES-GM-HAM). Different mixed synergies appeared when more specific patterns of coordination of the pelvis and spine were performed. For example, during pelvic tilts in the sagittal plane, RA-OE-OI-GM formed a synergy which was activated reciprocally with ES. The neural circuitry controlling muscles of the pelvis and trunk is apparently adaptable to a variety of different tasks. Individual muscles were shown to either cause, brake or prevent a movement and to be integrated in several different task-specific motor synergies.(ABSTRACT TRUNCATED AT 250 WORDS)

  • 283.
    Oddsson, Lars
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Moritani, Toshio
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Andersson, Eva A
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Differences between males and females in EMG and fatiguability of lumbar back muscles.1991In: Electromyographical Kinesiology / [ed] Anderson PA, Hobart DJ, Danoff JV, Amsterdam: Elsevier Science Publisher (Biomedical Division) , 1991, p. 295-298Chapter in book (Other academic)
  • 284.
    Paanalahti, Markku
    et al.
    University of Gothenburg.
    Berzina, Guna
    Riga Stradiņš University, Latvia.
    Lundgren-Nilsson, Åsa
    University of Gothenburg .
    Arndt, Anton
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Sunnerhagen, Katharina S
    University of Gothenburg .
    Examination of the relevance of the ICF cores set for stroke by comparing with the Stroke Impact Scale.2019In: Disability and Rehabilitation, ISSN 0963-8288, E-ISSN 1464-5165, Vol. 41, no 5, p. 508-513Article in journal (Refereed)
    Abstract [en]

    PURPOSE: To examine if the International Classification of Functioning (ICF) core set for stoke contains problems that are relevant for the persons living with stroke as expressed in the Stroke Impact Scale (SIS).

    METHODS: Cross-sectional study of 242 persons with previous stroke. The agreement between the perceived problems in the SIS items and problems in the categories of Comprehensive ICF Core Set for stroke were analyzed using percent of agreement and Kappa statistic.

    RESULTS: The analyses between 57 items of the SIS and 31 second-level categories of the ICF were conducted. The problems in domains of "Mobility", "Activities of daily living", "Hand function", "Strength" in the SIS had moderate agreement when compared to ICF categories. The SIS domains of "Emotion" and "Communication", as well as some aspects of the "Memory" had slight or fair agreement with corresponding ICF categories. The results of the study suggest that there is acceptable agreement between persons after stroke and health professionals in the physical aspects, but rather poor agreement in the cognitive and emotional aspects of functioning.

    CONCLUSIONS: Health professionals do not fully capture the magnitude of emotional or social problems experienced by persons after stroke when using the ICF Core Set as a framework for evaluation. Implications for Rehabilitation The ICF Core Set for Stroke provides comprehensive list of possible health and health related outcomes for persons after stroke. Problems reported in condition-specific patient-reported outcome scales can be important in decision making in rehabilitation. Patients and health professionals tend to agree more on physical than cognitive problems. Examination of the relevance of the ICF cores set for stroke by comparing with the Stroke Impact Scale.

  • 285. Paanalahti, Markku
    et al.
    Lundgren-Nilsson, Asa
    Arndt, Anton
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Sunnerhagen, Katharina S
    Applying the Comprehensive International Classification of Functioning, Disability and Health Core Sets for stroke framework to stroke survivors living in the community.2013In: Journal of Rehabilitation Medicine, ISSN 1650-1977, E-ISSN 1651-2081, Vol. 45, no 4, p. 331-40Article in journal (Refereed)
    Abstract [en]

    OBJECTIVE: The aims of this study were to explore the perspective of functioning in community-dwelling people with prior stroke and to confirm, if possible, the comprehensive international classification of functioning, disability and health (ICF) Comprehensive Core Set for stroke.

    METHODS: Qualitative interviews were analysed (using the content analysis method and established ICF linking rules) from 22 persons following stroke (age range 59-87 years), as well as their spouses/partners, where relevant.

    RESULTS: Ninety-nine (76%) of 130 second-level ICF categories in the existing Comprehensive ICF Core Set for stroke were confirmed: 31 categories (of 41) in the component of body functions, 38 categories (of 51) in the component of activities and participation, 26 (of 33) in the component of environmental factors and 4 (of 5) in the component of body structures. Eleven additional ICF categories and one personal factor, a coping style of "I take it as it comes" were also identified in the transcribed text.

    CONCLUSION: The Comprehensive ICF Core Set for stroke was largely confirmed.

  • 286.
    Pantzar, Alexandra
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences.
    Jonasson, Lars S.
    Umeå University.
    Ekblom, Örjan
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology.
    Boraxbekk, Carl-Johan
    Umeå University.
    Ekblom, Maria
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control. Karolinska Institutet.
    Relationships Between Aerobic Fitness Levels and Cognitive Performance in Swedish Office Workers2018In: Frontiers in Psychology, ISSN 1664-1078, E-ISSN 1664-1078, Vol. 9, article id 2612Article in journal (Refereed)
    Abstract [en]

    Objectives: Aerobic exercise influence cognition in elderly, children, and neuropsychiatric populations. Less is known about the influence of aerobic exercise in healthy samples (particularly working age), and of different fitness levels on cognition. Two hypotheses were posed: 1) low fitness levels, compared to moderate and high, will be related to poorer cognitive performance, and 2) breakpoints for the beneficial relationship between VO2 and cognition will be observed within the moderate-to-high fitness span. Design and Methods: The sample consisted of n=362 office workers. A submaximal cycle ergometer test estimated maximal oxygen consumption (VO2max, mL•kg-1•min-1). Based on estimated VO2max participants were split into tertiles; low (n=121), moderate (n=119), and high (n=122). A cognitive test battery (9 tests), assessed processing speed, working memory, executive functions and episodic memory. Results: Both hypotheses were confirmed. Groups of moderate (≈40) and high (≈49) fitness outperformed the group of low (≈31) fitness for inhibition and episodic recognition, whereas no significant differences between moderate and high fitness were observed (ANCOVAs). Breakpoints between benefits fromVO2max for inhibition and recognition were estimated to ≈44/43 mL•kg-1•min-1 (multivariate broken line regressions). Conclusions: Results suggest that it is conceivable to expect a beneficial relationship between VO2max and some cognitive domains up to a certain fitness level. In a sample of healthy office workers, this level was estimated to 44 mL•kg-1•min-1. This has implications on organizational and societal levels; where incentives to improve fitness levels from low to moderate could yield desirable cognitive and health benefits in adults.

    Download full text (pdf)
    fulltext
  • 287. Peolsson, Michael
    et al.
    Löfstedt, Tommy
    Vogt, Susanna
    Stenlund, Hans
    Arndt, Anton
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Trygg, Johan
    Modelling human musculoskeletal functional movements using ultrasound imaging.2010In: BMC Medical Imaging, ISSN 1471-2342, E-ISSN 1471-2342, Vol. 10, p. 9-Article in journal (Refereed)
    Abstract [en]

    This new objective method is a powerful tool to use when visualising tissue activity and dynamics of musculoskeletal ultrasound registrations.

  • 288.
    Peter, A
    et al.
    Neuromuscular Research Center, University of Jyväslylä, Finland.
    Andersson, Eva
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Tarassova, Olga
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Finni, T
    Neuromuscular Research Center, University of Jyväslylä, Finland.
    Hegyi, A
    Neuromuscular Research Center, University of Jyväslylä, Finland.
    Cronin, N
    Neuromuscular Research Center, University of Jyväslylä, Finland.
    Arndt, Anton
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Surface compared to fine-wire electromyography activity of lower leg muscles at different walking speeds.2019Conference paper (Refereed)
    Abstract [en]

    Summary: Surface and fine-wire electromyography activity of flexor hallucis longus, soleus, medial and lateral gastrocnemius and tibialis anterior muscles was measured simultaneously during walking at four different speeds to examine whether signals recorded with the two methods exhibit similar signal characteristics. We found statistical differences between methods at all walking speeds in soleus and tibialis anterior, at all speeds except fast walking in flexor hallucis longus, and at faster speeds in lateral gastrocnemius. No differences were found in medial gastrocnemius at any speed or in lateral gastrocnemius at slow and preferred speed walking.

  • 289.
    Peter, Annamaria
    et al.
    Neuromuscular Research Center, University of Jyväskylä, Finland.
    Andersson, Eva
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Arndt, Anton
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Finni, T
    Neuromuscular Research Center, University of Jyväskylä, Finland.
    Cronin, NJ
    Neuromuscular Research Center, University of Jyväskylä, Finland.
    Impact of footwear type and walking speed on ankle plantar flexor fine-wire electromyographic activity2018In: Sport science at the cutting edge, 2018Conference paper (Refereed)
    Abstract [en]

    INTRODUCTION:

    Ankle plantar flexors substantially contribute to propulsion in human walking, and their relative contributions may be affected by the type of footwear used. In this study, we aimed to examine plantar flexor fine-wire electromyography (wEMG) activity in different footwear types and barefoot walking. We further examined the effect of walking speed on the relative activity of ankle plantar flexors.

    METHODS:

    Nine healthy people volunteered to this study (five males) with two sessions. In session 1, participants were familiarized to the study protocol. In session 2, electrical activity of flexor hallucis longus (FHL), soleus (SOL), medial and lateral gastrocnemius (MG and LG) muscles were measured with wEMG during eight overground walking tasks: preferred speed walking with shoes, barefoot and with flip-flops; with shoes: 30% slower and faster than preferred speed walking with shoes, and maximum walking speed; walking barefoot and with flip-flops at the same speed as preferred speed walking with shoes (matched speed). Then they performed maximal isometric plantar flexion contractions and maximal big toe flexions superimposed on ankle plantar flexion (MVICs) in an isokinetic dynamometer for wEMG normalization. Root mean square activity was calculated in the push-off phase of individual step cycles based on ground reaction force data. The relative contribution of each muscle to propulsion was calculated as: (mean RMS value %MVIC of the given muscle / mean RMS value %MVIC of all muscles) * 100. Cohen’s d±90% confidence intervals were calculated to define the magnitude of differences.

    RESULTS:

    In all muscles, wEMG activity increased with speed. With increasing speed the relative contribution to propulsion increased in FHL (from 19 to 22%), did not change in SOL (32%), decreased in MG (from 32 to 25%) and increased in LG (from 18 to 21%). There were no differences between preferred and matched barefoot walking speed or wEMG activity level (d range = 0.06-0.17). wEMG activity for all muscles was lower during matched barefoot walking than preferred speed walking with shoes (7-10% MVIC, d range=0.31-0.47). Flip-flop data are under analysis.

    CONCLUSION:

    We found that relative wEMG activity of the examined muscles was affected by speed and absence or presence of shoes. During barefoot walking, wEMG activity of plantar flexor muscles was lower than during shod walking at the same speed, which presumably means that shod walking limits the contribution of intrinsic foot muscles to propulsion, which should be further examined.

    REFERENCES:

    1 Murley GS, Menz HB, Landorf KB. (2014). Gait & Posture, 39(4), 1080-5.

    2 Goldmann JP, Potthast W, Brüggemann GP. (2013). Footwear Sci, 5 (1): 19-25.

    3 Franklin et al., Gait & Posture. 60: 1-5, 2018.

    CONTACT:

    annamaria.a.peter@jyu.fi

  • 290.
    Peter, Annamaria
    et al.
    University of Jyväskylä, Finland.
    Arndt, Anton
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control. Karolinska institutet.
    Andersson, Eva
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control. Karolinska institutet.
    Finni, Taija
    University of Jyväskylä, Finland.
    Hegyi, Andras
    University of Jyväskylä, Finland.
    Tarassova, Olga
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Cronin, Neil
    University of Jyväskylä, Finland.
    Effect of footwear on plantar flexor fine-wire electromyography activity in walking.2019In: Footwear Science. 2019 Supplement, Vol. 11, p S120-S121: Proceedings of the Fourteenth Footwear Biomechanics Symposium (Kananaskis, Canada, 2019), Taylor & Francis, 2019, Vol. 11, p. S120-S121Conference paper (Other academic)
  • 291. Pinniger, G J
    et al.
    Nordlund Ekblom, Maria
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Steele, J R
    Cresswell, Andrew G
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences.
    H-reflex modulation during passive lengthening and shortening of the human triceps surae.2001In: Journal of Physiology, ISSN 0022-3751, E-ISSN 1469-7793, Vol. 534, no Pt 3, p. 913-23Article in journal (Refereed)
    Abstract [en]

    1. The present study investigated the effects of lengthening and shortening actions on H-reflex amplitude. H-reflexes were evoked in the soleus (SOL) and medial gastrocnemius (MG) of human subjects during passive isometric, lengthening and shortening actions performed at angular velocities of 0, +/-2, +/-5 and +/-15 deg s(-1). 2. H-reflex amplitudes in both SOL and MG were significantly depressed during passive lengthening actions and facilitated during passive shortening actions, when compared with the isometric H-reflex amplitude. 3. Four experiments were performed in which the latencies from the onset of movement to delivery of the stimulus were altered. Passive H-reflex modulation during lengthening actions was found to begin at latencies of less than 60 ms suggesting that this inhibition was due to peripheral and/or spinal mechanisms. 4. It is postulated that the H-reflex modulation seen in the present study is related to the tonic discharge of muscle spindle afferents and the consequent effects of transmission within the Ia pathway. Inhibition of the H-reflex at less than 60 ms after the onset of muscle lengthening may be attributed to several mechanisms, which cannot be distinguished using the current protocol. These may include the inability to evoke volleys in Ia fibres that are refractory following muscle spindle discharge during rapid muscle lengthening, a reduced probability of transmitter release from the presynaptic terminal (homosynaptic post-activation depression) and presynaptic inhibition of Ia afferents from plantar flexor agonists. Short latency facilitation of the H-reflex may be attributed to temporal summation of excitatory postsynaptic potentials arising from muscle spindle afferents during rapid muscle lengthening. At longer latencies, presynaptic inhibition of Ia afferents cannot be excluded as a potential inhibitory mechanism.

  • 292. Pinniger, G J
    et al.
    Steele, J R
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Cresswell, A G
    Tension regulation during lengthening and shortening actions of the human soleus muscle.2000In: European Journal of Applied Physiology, ISSN 1439-6319, E-ISSN 1439-6327, Vol. 81, no 5, p. 375-83Article in journal (Refereed)
    Abstract [en]

    In the present study we investigated tension regulation in the human soleus (SOL) muscle during controlled lengthening and shortening actions. Eleven subjects performed plantar flexor efforts on an ankle torque motor through 30 degrees of ankle displacement (75 degrees -105 degrees internal ankle angle) at lengthening and shortening velocities of 5, 15 and 30 degrees. S(-1). To isolate the SOL from the remainder of the triceps surae, the subject's knee was flexed to 60 degrees during all trials. Voluntary plantar flexor efforts were performed under two test conditions: (1) maximal voluntary activation (MVA) of the SOL, and (2) constant submaximal voluntary activation (SVA) of the SOL. SVA trials were performed with direct visual feedback of the SOL electromyogram (EMG) at a level resulting in a torque output of 30% of isometric maximum. Angle-specific (90 degrees ankle angle) torque and EMG of the SOL, medial gastrocnemius (MG) and tibialis anterior (TA) were recorded. In seven subjects from the initial group, the test protocol was repeated under submaximal percutaneous electrical activation (SEA) of SOL (to 30% isometric maximal effort). Lengthening torques were significantly greater than shortening torques in all test conditions. Lengthening torques in MVA and SVA were independent of velocity and remained at the isometric level, whereas SEA torques were greater than isometric torques and increased at higher lengthening velocities. Shortening torques were lower than the isometric level for all conditions. However, whereas SVA and SEA torques decreased at higher velocities of shortening, MVA torques were independent of velocity. These results indicate velocity- and activation-type-specific tension regulation in the human SOL muscle.

  • 293.
    Potthast, W
    et al.
    German Sport University Cologne, Institute of Biomechanics and Orthopaedics.
    Brüggemann, GP
    Lundberg, A
    Arndt, Toni
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Relative movements between the tibia and femur induced by external plantar shocks are controlled by muscle forces in vivo.2011In: Journal of Biomechanics, ISSN 0021-9290, E-ISSN 1873-2380, Vol. 44, no 6, p. 1144-1148Article in journal (Refereed)
    Abstract [en]

    The purpose of this study was to investigate the role of muscle activation on the relative motion between tibia and femur. Impacts were initiated under the heels of four volunteers in three different activation levels of muscles crossing the extended knee joint: 0%, 30% and 60% of previously performed maximal voluntary isometric contractions. Impact forces were measured and tibial and femoral accelerations and displacements were determined by means of accelerometry. The accelerometers were mounted on the protruding ends of intracortical pins, inserted into the distal aspect of the femur and proximal aspect of the tibia. Under the 0%-condition the impact force (475±64N) led to 2.3±1.2mm knee compression and to 2.4±1.9mm medio-lateral and 4.4±1.1mm antero-posterior shear. The impact forces increased significantly with higher activation levels (619±33N (30%), 643±147N (60%)), while the knee compression (1.5±1.2, 1.4±1.3mm) and both medio-lateral shear (1.8±1.4, 1.5±1.1mm) and antero-posterior shear (2.6±1.3, 1.5±1.1mm) were significantly reduced. This study indicated that muscles are effective in controlling the relative motion between tibia and femur when the knee is subjected to external forces.

  • 294.
    Priego Quesada, Jose Ignacio
    et al.
    University of Valencia, Spain.
    Jacques, Tiago Canal
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Bini, Rodrigo R.
    School of Physical Education of the Army, Rio de Janeiro, Brazil. .
    Carpes, Felipe P.
    Federal University of Pampa, Uruguaiana, Brazil.
    Importance of static adjustment of knee angle to determine saddle height in cycling2016In: Journal of Science and Cycling, ISSN 2254-7053, Vol. 5, no 1, p. 26-31Article in journal (Refereed)
    Abstract [en]

    Knee flexion angle is used to determine saddle height during pedaling. However, it is unclear how knee flexion angle at upright standing posture affects measures and interpretation of knee flexion angle during cycling. The objective of this study was to highlight the importance of adjusting knee angle during pedaling according to the knee angle at upright posture. Seventeen cyclists performed three 10 min cycling trials at different saddle heights to induce knee flexion angles (40º, 30º or 20º when crank was at the 6 o’clock position). Knee flexion angle was determined at the sagittal plane during cycling using a 2D motion analysis system. Alteration of saddle height was performed by subtracting the knee flexion determined during an upright standing posture from the observed knee flexion during cycling. Repeatability of knee angles at upright posture in the three trials was very good (ICC=0.73). A reduction in knee flexion angle of 10.6° (95%CI [8.6, 12.6º]) during cycling was found using the adjustment for upright standing posture (p<0.01; effect size>3.0). As a result, saddle height is affected by adjustments based on knee angle measured in upright standing posture. Determining saddle height without adjusting knee angle for upright standing posture could lead to errors with possible effects on performance and/or injury risk.

    Download full text (pdf)
    fulltext
  • 295.
    Psilander, Niklas
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology.
    Eftestøl, Einar
    University of Oslo, Norway.
    Cumming, Kristoffer Toldnes
    Norwegian School of Sport Sciences, Norway.
    Juvkam, Inga
    University of Oslo, Norway.
    Ekblom, Maria
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Sunding, Kerstin
    Karolinska Institutet.
    Wernbom, Mathias
    Göteborg University.
    Holmberg, Hans-Christer
    Mid Sweden University.
    Ekblom, Björn
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Björn Ekblom's research group.
    Bruusgaard, Jo C
    University of Oslo, Norway..
    Raastad, Truls
    Norwegian School of Sport Sciences, Norway.
    Gundersen, Kristian
    University of Oslo, Norway..
    Effects of training, detraining, and retraining on strength, hypertrophy, and myonuclear number in human skeletal muscle2019In: Journal of applied physiology, ISSN 8750-7587, E-ISSN 1522-1601, Vol. 126, no 6, p. 1636-1645Article in journal (Refereed)
    Abstract [en]

    Previously trained mouse muscles acquire strength and volume faster than naïve muscles; it has been suggested that this is related to increased myonuclear density. The present study aimed to determine whether a previously strength-trained leg (mem-leg) would respond better to a period of strength training than a previously untrained leg (con-leg). Nine men and 10 women performed unilateral strength training (T1) for 10 weeks, followed by 20 weeks of detraining (DT) and a 5-week bilateral retraining period (T2). Muscle biopsies were taken before and after each training period and analyzed for myonuclear number, fiber volume, and cross-sectional area (CSA). Ultrasound and one repetition of maximum leg extension were performed to determine muscle thickness (MT) and strength. CSA (~17%), MT (~10%), and strength (~20%) increased during T1 in the mem-leg. However, the myonuclear number and fiber volume did not change. MT and CSA returned to baseline values during DT, but strength remained elevated (~60%), supporting previous findings of a long-lasting motor learning effect. MT and strength increased similarly in the mem-leg and con-leg during T2, whereas CSA, fiber volume, and myonuclear number remained unaffected. In conclusion, training response during T2 did not differ between the mem-leg and con-leg. However, this does not discount the existence of human muscle memory since no increase in the number of myonuclei was detected during T1 and no clear detraining effect was observed for cell size during DT; thus, the present data did not allow for a rigorous test of the muscle memory hypothesis.

  • 296.
    Péter, Annamária
    et al.
    University of Jyväskylä, Jyväskylä, Finland.
    Andersson, Eva
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control. Karolinska institutet, Sweden.
    Hegyi, András
    University of Jyväskylä, Jyväskylä, Finland.
    Finni, Taija
    University of Jyväskylä, Jyväskylä, Finland.
    Tarassova, Olga
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Cronin, Neil
    University of Jyväskylä, Jyväskylä, Finland.
    Grundström, Helen
    Capio S:t Göran's Hospital, Stockholm, Sweden.
    Arndt, Anton
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control. Karolinska institutet, Sweden.
    Comparing Surface and Fine-Wire Electromyography Activity of Lower Leg Muscles at Different Walking Speeds.2019In: Frontiers in Physiology, ISSN 1664-042X, E-ISSN 1664-042X, Vol. 10, article id 1283Article in journal (Refereed)
    Abstract [en]

    Ankle plantar flexor muscles are active in the stance phase of walking to propel the body forward. Increasing walking speed requires increased plantar flexor excitation, frequently assessed using surface electromyography (EMG). Despite its popularity, validity of surface EMG applied on shank muscles is mostly unclear. Thus, we examined the agreement between surface and intramuscular EMG at a range of walking speeds. Ten participants walked overground at slow, preferred, fast, and maximum walking speeds (1.01 ± 0.13, 1.43 ± 0.19, 1.84 ± 0.23, and 2.20 ± 0.38 m s-1, respectively) while surface and fine-wire EMG activities of flexor hallucis longus (FHL), soleus (SOL), medial gastrocnemius (MG) and lateral gastrocnemius (LG), and tibialis anterior (TA) muscles were recorded. Surface and intramuscular peak-normalised EMG amplitudes were compared for each muscle and speed across the stance phase using Statistical Parametric Mapping. In FHL, we found differences around peak activity at all speeds except fast. There was no difference in MG at any speed or in LG at slow and preferred speeds. For SOL and LG, differences were seen in the push-off phase at fast and maximum walking speeds. In SOL and TA, surface EMG registered activity during phases in which intramuscular EMG indicated inactivity. Our results suggest that surface EMG is generally a suitable method to measure MG and LG EMG activity across several walking speeds. Minimising cross-talk in FHL remains challenging. Furthermore, SOL and TA muscle onset/offset defined by surface EMG should be interpreted cautiously. These findings should be considered when recording and interpreting surface EMG of shank muscles in walking.

    Download full text (pdf)
    fulltext
  • 297.
    Rosdahl, Hans
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, The Laboratory of Applied Sports Science (LTIV). Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, The Research Unit for Movement, Health and Environment. Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Gullstrand, Lennart
    Salier Eriksson, Jane
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, The Research Unit for Movement, Health and Environment.
    Johansson, Patrik
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Björn Ekblom's and Mats Börjesson's research group.
    Schantz, Peter
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, The Research Unit for Movement, Health and Environment.
    Evaluation of the Oxycon Mobile metabolic system against the Douglas bag method.2010In: European Journal of Applied Physiology, ISSN 1439-6319, E-ISSN 1439-6327, Vol. 109, no 2, p. 159-171Article in journal (Refereed)
    Abstract [en]

    The aim of this study was to evaluate two versions of the Oxycon Mobile portable metabolic system (OMPS1 and OMPS2) in a wide range of oxygen uptake, using the Douglas bag method (DBM) as criterion method. The metabolic variables VO2, VCO2, respiratory exchange ratio and VE were measured during submaximal and maximal cycle ergometer exercise with sedentary, moderately trained individuals and athletes as participants. Test-retest reliability was investigated using the OMPS1. The coefficients of variation varied between 2 and 7% for the metabolic parameters measured at different work rates and resembled those obtained with the DBM. With the OMPS1, systematic errors were found in the determination of VO2 and VCO2. At submaximal work rates VO2 was 6-14% and VCO2 5-9% higher than with the DBM. At VO2max both VO2 and VCO2 were slightly lower as compared to DBM (-4.1 and -2.8% respectively). With OMPS2, VO2 was determined accurately within a wide measurement range (about 1-5.5 L min(-1)), while VCO2 was overestimated (3-7%). VE was accurate at submaximal work rates with both OMPS1 and OMPS2, whereas underestimations (4-8%) were noted at VO2max. The present study is the first to demonstrate that a wide range of VO2 can be measured accurately with the Oxycon Mobile portable metabolic system (second generation). Future investigations are suggested to clarify reasons for the small errors noted for VE and VCO2 versus the Douglas bag measurements, and also to gain knowledge of the performance of the device under applied and non-laboratory conditions.

  • 298.
    Rosdahl, Hans
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Lindberg, Thomas
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, The Laboratory of Applied Sports Science (LTIV).
    Edin, Fredrik
    Nilsson, Johnny
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    The Moxus Modular metabolic sustem evaluated with two sensors for ventilation against the Douglas bag method2013In: European Journal of Applied Physiology, ISSN 1439-6319, E-ISSN 1439-6327, Vol. 113, no 5, p. 1353-1367Article in journal (Refereed)
    Abstract [en]

    This study evaluated the Moxus metabolic system with the Douglas bag method (DBM) as criterion. Reliability and validity were investigated in a wide range of ventilation and oxygen uptake and two sensors for determining ventilation were included. Thirteen well-trained athletes participated in one pre-test and four tests for data collection, exercising on a cycle ergometer at five submaximal powers (50-263 W) and at [Formula: see text]. Gas exchange variables were measured simultaneously using a serial setup with data collected on different days in an order randomized between Moxus with pneumotachometer (MP) and turbine flowmeter (MT) sensors for ventilation. Reliability with both sensors was comparable to the DBM. Average CV (%) of all exercise intensities were with MP: 3.0 ± 1.3 for VO(2), 3.8 ± 1.5 for VCO(2), 3.1 ± 1.2 for the respiratory exchange ratio (RER) and 4.2 ± 0.8 for V (E). The corresponding values with MT were: 2.7 ± 0.3 for VO(2), 4.7 ± 0.4 for VCO(2), 3.3 ± 0.9 for RER and 4.8 ± 1.4 for V (E). Validity was acceptable except for small differences related to the determination of ventilation. The relative differences in relation to DBM at the powers including [Formula: see text] were similar for both sensors with the ranges being: +4 to -2 % for V (E), +5 to -3 % for VO(2) and +5 to -4 % for VCO(2) while RER did not differ at any power. The Moxus metabolic system shows high and adequate reliability and reasonable validity over a wide measurement range. At a few exercise levels, V (E) differed slightly from DBM, resulting in concomitant changes in VO(2) and VCO(2).

  • 299.
    Rosén, Johanna S
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Arndt, Anton
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control. Karolinska institutet.
    Goosey-Tolfrey, Victoria L
    Loughborough University, UK.
    Mason, Barry S
    Loughborough University, UK.
    Hutchinson, Michael J
    Loughborough University, UK.
    Tarassova, Olga
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Bjerkefors, Anna
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    The impact of impairment on kinematic and kinetic variables in Va'a paddling: Towards a sport-specific evidence-based classification system for Para Va'a.2019In: Journal of Sports Sciences, ISSN 0264-0414, E-ISSN 1466-447X, Vol. 37, no 17, p. 1942-1950Article in journal (Refereed)
    Abstract [en]

    Para Va'a is a new Paralympic sport in which athletes with trunk and/or leg impairment compete over 200 m. The purpose of this study was to examine the impact of impairment on kinematic and kinetic variables during Va'a ergometer paddling. Ten able-bodied and 44 Para Va'a athletes with impairments affecting: trunk and legs (TL), legs bilaterally (BL) or leg unilaterally (UL) participated. Differences in stroke frequency, mean paddling force, and joint angles and correlation of the joint angles with paddling force were examined. Able-bodied demonstrated significantly greater paddling force as well as knee and ankle flexion ranges of movement (ROM) on the top hand paddling side compared to TL, BL and UL. Able-bodied, BL and UL demonstrated greater paddling force and trunk flexion compared to TL, and UL demonstrated larger bottom hand paddling side knee and ankle flexion ROM compared to BL. Significant positive correlations were observed for both male and female athletes between paddling force and all trunk flexion angles and ROM in the trunk and pelvis rotation and bottom hand paddling side hip, knee and ankle flexion. The results of this study are important for creating an evidence-based classification system for Para Va'a.

    Download full text (pdf)
    fulltext
  • 300.
    Rosén, Johanna S
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Goosey-Tolfrey, Victoria L
    Loughborough University, UK.
    Tolfrey, Keith
    Loughborough University, UK.
    Arndt, Anton
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Bjerkefors, Anna
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Interrater Reliability of the New Sport-Specific Evidence-Based Classification System for Para Va'a.2020In: Adapted Physical Activity Quarterly, ISSN 0736-5829, E-ISSN 1543-2777, article id apaq.2019-0141Article in journal (Refereed)
    Abstract [en]

    The purpose of this study was to examine the interrater reliability of a new evidence-based classification system for Para Va'a. Twelve Para Va'a athletes were classified by three classifier teams each consisting of a medical and a technical classifier. Interrater reliability was assessed by calculating intraclass correlation for the overall class allocation and total scores of trunk, leg, and on-water test batteries and by calculating Fleiss's kappa and percentage of total agreement in the individual tests of each test battery. All classifier teams agreed with the overall class allocation of all athletes, and all three test batteries exhibited excellent interrater reliability. At a test level, agreement between classifiers was almost perfect in 14 tests, substantial in four tests, moderate in four tests, and fair in one test. The results suggest that a Para Va'a athlete can expect to be allocated to the same class regardless of which classifier team conducts the classification.

    Download full text (pdf)
    fulltext
345678 251 - 300 of 367
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf