Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Petré, Henrik
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, The Laboratory of Applied Sports Science (LTIV).
    Löfving, Pontus
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, The Laboratory of Applied Sports Science (LTIV).
    Psilander, Niklas
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology.
    The Effect of Two Different Concurrent Training Programs on Strength and Power Gains in Highly-Trained Individuals.2018In: Journal of Sports Science and Medicine (JSSM), ISSN 1303-2968, Vol. 17, no 2, p. 167-173Article in journal (Refereed)
    Abstract [en]

    The effects of concurrent strength and endurance training have been well studied in untrained and moderately-trained individuals. However, studies examining these effects in individuals with a long history of resistance training (RT) are lacking. Additionally, few studies have examined how strength and power are affected when different types of endurance training are added to an RT protocol. The purpose of the present study was to compare the effects of concurrent training incorporating either low-volume, high-intensity interval training (HIIT, 8-24 Tabata intervals at ~150% of VO2max) or high-volume, medium-intensity continuous endurance training (CT, 40-80 min at 70% of VO2max), on the strength and power of highly-trained individuals. Sixteen highly-trained ice-hockey and rugby players were divided into two groups that underwent either CT (n = 8) or HIIT (n = 8) in parallel with RT (2-6 sets of heavy parallel squats, > 80% of 1RM) during a 6-week period (3 sessions/wk). Parallel squat performance improved after both RT + CT and RT + HIIT (12 ± 8% and 14 ± 10% respectively, p < 0.01), with no difference between the groups. However, aerobic power (VO2max) only improved after RT + HIIT (4 ± 3%, p < 0.01). We conclude that strength gains can be obtained after both RT + CT and RT + HIIT in athletes with a prior history of RT. This indicates that the volume and/or intensity of the endurance training does not influence the magnitude of strength improvements during short periods of concurrent training, at least for highly-trained individuals when the endurance training is performed after RT. However, since VO2max improved only after RT + HIIT and this is a time efficient protocol, we recommend this type of concurrent endurance training.

  • 2.
    Petré, Henrik
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, The Laboratory of Applied Sports Science (LTIV).
    Ovendal, Alexander
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, The Laboratory of Applied Sports Science (LTIV).
    Westblad, Niklas
    Mattsson, C. Mikael
    Karolinska institutet, Stanford University.
    Skador inom parkour och preventiva åtgärder2018In: Idrottsmedicin, ISSN 1103-7652, Vol. 37, no 4, p. 4-9Article in journal (Other academic)
  • 3.
    Petré, Henrik
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, The Laboratory of Applied Sports Science (LTIV).
    Wernstål, Fredrik
    Karolinska Institutet.
    Mattsson, C. Mikael
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences. Karolinska Institutet.
    Effects of Flywheel Training on Strength-Related Variables: a Meta-analysis.2018In: Sports medicine - open, ISSN 2199-1170, Vol. 4, no 1, article id 55Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Strength and power development are abilities important for athletic performance in many sports. Generally, resistance training based on gravity is used to improve these qualities. Flywheel training instead utilizes kinetic energy transferred to a flywheel. This allows for eccentric overload and variable resistance throughout the movement. The aim of this review was to identify the effects of flywheel training on multiple strength-related variables affecting athletic performance. The meta-analysis investigates the effects on (1) muscle growth (cross-sectional area (CSA) and volume/mass), (2) maximum dynamic strength, (3) development of power, (4) development of horizontal movement, and (5) development of vertical movement.

    METHODS: The meta-analysis includes 20 experimental studies that met the inclusion criteria. The quality of included studies was ranked according to the PEDro scale. Possible bias was identified in Funnel plot analyses. To enable the compilation of all results analyses, the random effect model was carried out using the software Review Manager Version 5.3 and presented with Forest plots.

    RESULTS: Flywheel training for a period of 4-24 weeks shows statistically significant increases in all strength aspects. Effect sizes were for hypertrophy, CSA 0.59; volume/mass 0.59; maximum strength 1.33; power 1.19; horizontal 1.01 and vertical movement 0.85. The evidence is particularly strong for beneficial effects from flywheel training in the development of maximal strength and power in trained younger individuals, and utilization of this training modality in shorter more intensive blocks.

    CONCLUSIONS: Flywheel training is an effective method for improving several aspects of strength and power with importance for sports performance.

  • 4.
    Psilander, Niklas
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology.
    Petré, Henrik
    Swedish School of Sport and Health Sciences, GIH.
    Löfving, Pontus
    Swedish School of Sport and Health Sciences, GIH.
    Överdriven oro för kombinationsträning2015In: Svensk Idrottsforskning: Organ för Centrum för Idrottsforskning, ISSN 1103-4629, no 1, p. 8-13Article in journal (Other academic)
    Abstract [sv]

    Många som vill öka sin muskelmassa och styrka undviker uthållighetsträning. En vanlig åsikt är nämligen att man inte bör kombinera styrke ochuthållighetsträning. Den uppfattningen har däremot inget stöd i den senaste forskningen.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf