Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Daggfeldt, Karl
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences.
    Biomechanics of back extension torque production about the lumbar spine2002Doctoral thesis, comprehensive summary (Other academic)
  • 2.
    Daggfeldt, Karl
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences.
    Letter to the Editor Concerning “An Automated Blood Vessel Segmentation Algorithm Using Histogram Equalization and Automatic Threshold Selection”2011In: Journal of digital imaging, ISSN 0897-1889, E-ISSN 1618-727X, Vol. 24, no 4, p. 562-563Article in journal (Other academic)
  • 3.
    Daggfeldt, Karl
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences.
    Muscle Bulging Reduces Muscle Force and Limits the Maximal Effective Muscle Size2006In: Journal of Mechanics in Medicine and Biology, ISSN 0219-5194, Vol. 6, no 3, p. 229-239Article in journal (Refereed)
    Abstract [en]

    A biomechanical model was generated in order to investigate the possible mechanisms behind reductions in muscle performance due to muscle bulging. It was shown that the proportion of fiber force contributing to the total muscle force is reduced with fiber bulging and that the cause of this reduction is due to the intramuscular pressure (IMP) created by the bulging fibers. Moreover, it was established that the amount of IMP generated muscle force reduction is determined by the extent to which muscle thickening restricts muscle fibers from shortening, thereby limiting their power contribution. It was shown that bulging can set a limit to the maximal size a muscle can take without losing force and power producing capability. Possible effects, due to bulging, on maximal muscle force in relation to both muscle length and muscle shortening velocity were also demonstrated by the model.

  • 4.
    Daggfeldt, Karl
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Huang, Q M
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    The visible human anatomy of the lumbar erector spinae.2000In: Spine, ISSN 0362-2436, E-ISSN 1528-1159, Vol. 25, no 21, p. 2719-25Article in journal (Refereed)
    Abstract [en]

    STUDY DESIGN: Image data of the male and female cadavers from the Visible Human Project were visualized and quantified. OBJECTIVE: To clarify the anatomy of the lumbar part of the human lumbar erector spinae muscles. SUMMARY OF BACKGROUND DATA: Recent studies have shown discrepancies in the description of the anatomy of the lumbar part of the lumbar erector spinae. The main differences concern whether lumbar fascicles of iliocostalis lumborum exist and whether the lumbar fascicles have direct attachments to the ilium or attach via the erector spinae aponeurosis. With the Visible Human Project from the U.S. National Library of Medicine, a new powerful basis for anatomic investigation has become available. METHODS: Software was produced to visualize sections oriented in any direction and with maximum resolution of the Visible Human male and female. Three-dimensional coordinates of anatomic structures in the image space could be marked in the cross-sectional images. The geometry and the physiologic cross-sectional areas of the erector spinae fascicles of lumbar origin were thus derived. RESULTS AND CONCLUSIONS: The study supports a classification of the lateral fascicles of the lumbar part of the lumbar erector spinae as part of iliocostalis lumborum. In both the male and the female, a large part of the erector spinae fibers of lumbar origin attached to the erector spinae aponeurosis. These results are of importance for biomechanical analysis of force transmission in the lumbar spine.

  • 5.
    Daggfeldt, Karl
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    The mechanics of back-extensor torque production about the lumbar spine.2003In: Journal of Biomechanics, ISSN 0021-9290, E-ISSN 1873-2380, Vol. 36, no 6, p. 815-25Article in journal (Refereed)
    Abstract [en]

    The purpose of this study was to develop and evaluate a biomechanical model of lumbar back extension over a wide range of positions for the lumbar spine, incorporating the latest information on muscle geometry and intra-abdominal pressure (IAP). Analysis of the Visible Human data was utilised in order to obtain anatomical information unavailable from the literature and magnetic resonance imaging was used to generate subject-specific anatomical descriptions. The model was evaluated by comparisons with measured maximal voluntary static back-extension torques. Predicted maximal specific muscle tensions agreed well with in vitro measurements from the literature. When modelling the maximal static back-extension torque production, it was possible to come fairly close to simultaneous equilibrium about all the lumbar discs simply by a uniform muscle activation of all back-extensor muscles (the caudal part showed, however, less agreement). This indicates that equilibrium in the lumbar spine is mainly regulated by passive mechanical properties, e.g. muscle length changes due to postural changes, rather than due to complex muscle coordination, as earlier proposed. The model showed that IAP (measured during torque exertions) contributes about 10% of the total maximal voluntary back-extensor torque and that it can unload the spine from compression. The spinal unloading effect from the IAP was greatest with the spine held in a flexed position. This is in opposition to the effects of changed muscle lever arm lengths, which for a given load would give the largest spinal unloading in the extended position. These findings have implications for the evaluation of optimal lifting techniques.

  • 6.
    Daggfeldt, Karl
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    The role of intra-abdominal pressure in spinal unloading.1997In: Journal of Biomechanics, ISSN 0021-9290, E-ISSN 1873-2380, Vol. 30, no 11-12, p. 1149-55Article in journal (Refereed)
    Abstract [en]

    Previous studies on how an increase in intra-abdominal pressure (IAP) effects the loading of the lumbar spine during back extension show diverging results. From a critical review of the literature we deduce a simplified, but consistent, model of the mechanisms involved in IAP-induced unloading of the lumbar spine. The model is then expanded by explicitly incorporating equilibrium equations for the pressurised abdomen and the abdominal wall. It is shown that the unloading effect of IAP can be viewed as that of a pressurised column of fixed cross-sectional area, between the rib cage and pelvis. Different abdominal forms are examined and a form with zero longitudinal curvature is found to have some important mechanical benefits for the generation of IAP-induced alleviation of compressive loading of the lumbar spine.

  • 7. Hodges, P W
    et al.
    Cresswell, A G
    Daggfeldt, Karl
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    In vivo measurement of the effect of intra-abdominal pressure on the human spine.2001In: Journal of Biomechanics, ISSN 0021-9290, E-ISSN 1873-2380, Vol. 34, no 3, p. 347-53Article in journal (Refereed)
    Abstract [en]

    In humans, intra-abdominal pressure (IAP) is elevated during many everyday activities. This experiment aimed to investigate the extent to which increased IAP--without concurrent activity of the abdominal or back extensor muscles--produces an extensor torque. With subjects positioned in side lying on a swivel table with its axis at L3, moments about this vertebral level were measured when IAP was transiently increased by electrical stimulation of the diaphragm via the phrenic nerve. There was no electromyographic activity in abdominal and back extensor muscles. When IAP was increased artificially to approximately 15% of the maximum IAP amplitude that could be generated voluntarily with the trunk positioned in flexion, a trunk extensor moment (approximately 6 Nm) was recorded. The size of the effect was proportional to the increase in pressure. The extensor moment was consistent with that predicted from a model based on measurements of abdominal cross-sectional area and IAP moment arm. When IAP was momentarily increased while the trunk was flexed passively at a constant velocity, the external torque required to maintain the velocity was increased. These results provide the first in vivo data of the amplitude of extensor moment that is produced by increased IAP. Although the net effect of this extensor torque in functional tasks would be dependent on the muscles used to increase the IAP and their associated flexion torque, the data do provide evidence that IAP contributes, at least in part, to spinal stability.

  • 8. Hodges, P W
    et al.
    Cresswell, A G
    Daggfeldt, Karl
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Three dimensional preparatory trunk motion precedes asymmetrical upper limb movement.2000In: Gait & Posture, ISSN 0966-6362, E-ISSN 1879-2219, Vol. 11, no 2, p. 92-101Article in journal (Refereed)
    Abstract [en]

    Three-dimensional trunk motion, trunk muscle electromyography and intra-abdominal pressure were evaluated to investigate the preparatory control of the trunk associated with voluntary unilateral upper limb movement. The directions of angular motion produced by moments reactive to limb movement in each direction were predicted using a three-dimensional model of the body. Preparatory motion of the trunk occurred in three dimensions in the directions opposite to the reactive moments. Electromyographic recordings from the superficial trunk muscles were consistent with preparatory trunk motion. However, activation of transversus abdominis was inconsistent with control of direction-specific moments acting on the trunk. The results provide evidence that anticipatory postural adjustments result in movements and not simple rigidification of the trunk.

  • 9. Tveit, P
    et al.
    Daggfeldt, Karl
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Hetland, S
    Thorstensson, Alf
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Erector spinae lever arm length variations with changes in spinal curvature.1994In: Spine, ISSN 0362-2436, E-ISSN 1528-1159, Vol. 19, no 2, p. 199-204Article in journal (Refereed)
    Abstract [en]

    Magnetic resonance imaging was used to study the effect of different curvatures in the lumbar spine on lever arm lengths of the erector spinae musculature. Eleven subjects were instructed to simulate static lifts while lying supine in a magnetic resonance camera with the lumbar spine either in kyphosis or lordosis. A sagittal image of the spine was obtained to analyze the lumbosacral angle and to guide the imaging of transverse sections through each disc (L1/L2 to L5/S1). Images were analyzed for lever arm lengths of the erector spinae muscle (ES) and the erector spinae aponeurosis (ESA), the latter functioning as a tendon for superiorly positioned ES muscle portions. The lumbosacral angle (between superior surfaces of S1 and L4) averaged 44 degrees in the lordosed, 26 degrees in the kyphosed and 41 degrees in a neutral supine position. In lordosis, the lever arm lengths were significantly longer than in kyphosis for all levels, averaging 60-63 mm (ES) and 82-86 mm (ESA). The corresponding values for kyphosis were 49-57 mm (ES) and 67-77 mm (ESA), respectively. Thus, there was a considerable effect (10-24%) of lumbar curvature on lever arm lengths for the back extensor muscles. The change in leverage will affect the need for extensor muscle force and thus the magnitude of compression in the lumbar spine in loading situations such as lifting.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf