Gymnastik- och idrottshögskolan, GIH

Change search
Refine search result
1 - 29 of 29
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bovard, Joshua
    et al.
    Univ British Columbia, Vancouver, BC, Canada..
    Cardinale, Daniele A.
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Larsen, Filip J
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Reiter, Emma
    Univ British Columbia, Vancouver, BC, Canada..
    Jensen-Urstad, Mads
    Karolinska Inst, Stockholm, Sweden..
    Rullman, Erik
    Karolinska Inst, Stockholm, Sweden..
    Morales-Alamo, David
    Univ Las Palmas Gran Canaria, Las Palmas Gran Canaria, Spain..
    Ekblom, Björn
    Swedish School of Sport and Health Sciences, GIH.
    Calbet, Jose A. L.
    Univ Las Palmas Gran Canaria, Las Palmas Gran Canaria, Spain..
    Boushel, Robert
    Univ British Columbia, Vancouver, BC, Canada..
    Sex-differences In Exercising Hemodynamics: Role Of Exercising Muscle Mass2020In: MEDICINE AND SCIENCE IN SPORTS AND EXERCISE. 52:17. Suppl. Meeting Abstract: 924, Lippincott Williams & Wilkins, 2020, Vol. 52, no 17, p. 224-224Conference paper (Other academic)
  • 2.
    Cardinale, Daniele A.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Exercise training strategies to optimize muscle oxygen uptake, muscle oxidative capacity and performance in humans2015Conference paper (Other academic)
    Abstract [en]

    My research area focuses on studying the entire O2 cascade in humans from lungs to mitochondria with an integrative approach.

    The overall aim of the PhD project is to examine in detail 1) the differences in convective O2 delivery (Fick method) and mitochondrial function (high resolution respirometry technique) between individuals with low and high VO2 max, 2) to quantify the effect of aerobic interval training with elevated O2 delivery on circulatory, muscle mitochondrial components on VO2 max in highly trained individuals, as well as, 3) to quantify the effect of elevated O2 delivery on circulatory and metabolic responses (blood flow and muscle VO2) to exercise engaging small and large muscle groups. A specific focus of the PhD project is to examine and quantify how differences in a) mitochondrial OXPHOS capacity and b) mitochondrial O2 affinity (p50) define differences in muscle O2 extraction and muscle VO2 between individuals of low fitness and those with high aerobic endurance capacity. Although a vast body of literature supports a strong link between muscle oxidative capacity and peak VO2 during exercise, almost all studies are correlative, and the dependence and contribution of mitochondrial capacity to muscle VO2 has yet to be quantified. To this end, experiments are designed to control for O2 transport during exercise as the independent variable between groups with high and low aerobic capacities. The effect of aerobic interval training with elevated O2 delivery on central (circulatory) and peripheral (muscle oxidative) mechanisms for elevating peak VO2 and endurance performance are explored in endurance-trained individuals. Hyperoxic air increases O2 dissolved in the blood, elevates arterial O2 saturation, and increases arterial O2 concentration, resulting in a higher O2 delivery to the working muscle independently from blood flow. Since mitochondria have an excess oxidative capacity in relation to O2 delivery during whole body exercise in normoxia, we hypothesize that mitochondrial volume, function and O2 affinity as well as endurance performance are largely improved following endurance interval training with elevated O2 delivery compared to normoxia.

    Our preliminary data show that OXPHOS and performance are significantly enhanced following six weeks of periodized aerobic interval training. Significantly differences in performance but not in OXPHOS are found when training is conducted in hyperoxia compared to normoxia.

  • 3.
    Cardinale, Daniele A.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Skeletal muscle V̇O2max and mitochondrial p50 measured in-vivo and ex-vivo: effect of hyperoxia in exercise with small and large muscle mass in well-trained individuals2016Conference paper (Other academic)
    Abstract [en]

    In healthy individuals maximal oxygen uptake is limited by cardiac output when exercising with large musclemass, e.g. 2-legged cycling (BIKE), whereas during one-leg knee extension (KE) exercise there is a closermatch between the amounts of O2 delivered to O2 demand. However hyperoxia has been shown to increaseO2 uptake in both work modalities. This study examined the extent to which hyperoxia affects leg oxygentransport, muscle diffusion capacity, mitochondrial oxygen affinity (p50mito) in vivo and ex vivo, and muscleO2 uptake during exercise engaging a large and small muscle mass in well-trained individuals. In this studywe show that light hyperoxia increases O2 uptake at peak incremental exercise (~10%, p< 0.05) in bothBIKE and KE due to an increased O2 delivery (~ 10%, p< 0.05), which in turn is mainly caused by anincreased arterial O2 content (~5%, p< 0.05), and a non-significant increased leg blood flow (~ 5%). Hencehyperoxia decreases mitochondrial O2 affinity as indicated by the higher calculated in vivo mitochondrialp50. Inspired O2 enhanced maximal work rate in BIKE (~6.5%) and in KE (~4.5%).Our data show that in vivo mitop50 is lower than the ex vivo measure in BIKE, whereas in vivo mitop50 issimilar to ex vivo measure in KE. These indicates that mitochondrial OXPHOS capacity was in excess inBIKE, whereas in KE was almost fully utilized in vivo. This study indicated that both during whole body peakexercise as well as during exercise with smaller muscle mass, V̇O2 may not limit O2 diffusion capacity.

  • 4.
    Cardinale, Daniele A.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Syrgas – så påverkas prestationen2016In: Idrottsforskning, ISSN 2002-3944, article id 31 marsArticle in journal (Other (popular science, discussion, etc.))
    Abstract [sv]

    Vältränade idrottare som andas syrgas ökar omedelbart prestationen. Trots det är metoden inte dopningsklassad. En genomgång av aktuell forskning visar att syrgasandning skulle ha en signifikant effekt under tävlingar, men hur det fungerar som träningsmetod är mer osäkert. Vanlig luft kan vara minst lika bra.

  • 5.
    Cardinale, Daniele A.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences.
    The significance of mitochondrial respiratory function in regulating oxygen uptake and performance in humans2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The mitochondrion is one of the most fascinating organelles of our cells which has kept and keeps researchers busy in studying its origin, the complex morphology, the numerous functions, the rapid adaptations to a variety of stimuli and its role in health and disease. Exercise challenges cellular homeostasis and skeletal muscle mitochondria greatly adapt to repeated bouts of exercise by increasing mitochondrial respiratory function and content to match energy requirements and to better sustain future perturbations induced by muscle contractions. The oxidative capacity of mitochondria has been shown to exceed the capacity of the cardiorespiratory system to supply oxygen to active muscle at maximal exercise intensity. Despite this, exercise training further increases this overcapacity. Little is known about the role of this excess oxidative capacity of mitochondria in regulating oxygen consumption, the role of oxygen delivery in determining exercise-induced skeletal muscle adaptations, and whether any sex-related differences exist. The assessment of mitochondrial respiratory function in high resolution respirometer is largely used for clinical and scientific purposes. However, the reliability of this method has not been systematically investigated and warrant further investigation.

    With this background, specific measures of reliability associated with repeated determination of maximal mitochondrial oxidative phosphorylation in saponin-permeabilized fibres, comparison of the right and left legs, variability with measurements at different time-points and over time, as well as influence of the local anesthetic and wet weight of the fiber bundle on determined maximal mitochondrial oxidative phosphorylation were investigated in paper I. The importance of having the same technicians in preparing the samples, and that the major source of variation in measuring mitochondrial oxidative capacity is the sample preparation per se were shown. Furthermore, other factors such as the possible difference between left and right limbs, two time points of sample collection, fibres bundle weight, time that elapsed after collection of the biopsy, and the use of an anesthetic have only a minor impact on the standard error of the measurement.

    In paper II the physiological significance of having a mitochondrial oxidative capacity in excess of the capacity of the central circulation to deliver oxygen to the tissue was shown by integrating measures of ex vivo mitochondrial respiratory function with direct in vivo measure of oxygen consumption when performing two-legged cycling and one-legged knee extension exercise while inspiring atmospheric air and oxygen enriched air in the same participants. Excess capacity of mitochondria allows submaximal mitochondrial activation at maximal oxygen delivery, thereby maintaining a high mitochondrial oxygen affinity and a high oxygen extraction peripherally. Considering the widespread and increasing sedentary behavior in a society plagued by diseases often linked to mitochondrial dysfunction, these results suggest the importance of preserving a high muscle oxidative capacity throughout life, which can be of significance in patients with heart, circulatory, and overall metabolic diseases.

    Despite known sex-specific metabolic differences in human skeletal muscle and that animal models have consistently shown females having a superior mitochondrial function compare to males, data in humans are lacking. In paper III the first evidence that women possess higher mitochondrial quality compared to men with equal cardiorespiratory fitness and endurance performance was provided. Mitochondrial oxygen affinity varied with the degree of mitochondrial respiration rate and was lower in women compared to men. These results indicate that the higher mitochondrial quality in women may be an important physiological adaptation that compensates for the lower mitochondrial oxygen affinity allowing a higher oxygen extraction peripherally. Moreover, these results could possibly be linked to the difference in life expectancy, disease occurrence and aging between women and men.

    Lastly, in paper IV it was shown that increasing oxygen delivery and exercise intensity by means of breathing hyperoxia during high-intensity exercise did not enhance cardiorespiratory fitness and exercise-induced skeletal muscle adaptations but still resulted in a small beneficial effect on performance in trained cyclists. This small positive effect on performance can be exploited in elite athletes; however, considering the cost/benefit, the unknown health-related problems, and ethical issues of performing hyperoxic-supplemented endurance training, it is arguable if the use of this strategy to maximize endurance performance is worthwhile.

    Overall, this thesis provides useful information for future research on various factors influencing the error of the measurement when assessing mitochondrial respiratory function. Moreover, this thesis sheds light on novel factors that regulate oxygen consumption during exercise, highlighting the importance of maintaining a good mitochondrial function. This thesis also provides possible directions for future studies on mitochondrial function, metabolism and exercise-induced adaptations.  

    Download full text (pdf)
    fulltext
    Download (pdf)
    spikblad
    Download (png)
    presentationsbild
  • 6.
    Cardinale, Daniele A.
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Cardinale, Marco
    Aspire Academy, Doha, Qatar.
    Nilsson, Johnny E.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, The Laboratory of Applied Sports Science (LTIV). University of Dalarna, Falun.
    Comparison between single and combined data collection methods in loaded squat jump power output2017In: Gazzetta Medica Italiana, ISSN 0393-3660, E-ISSN 1827-1812, Vol. 176, no 6, p. 315-321Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: The aim of this study was to compare linear position transducer force plate-based methods and more complex combinations of those for calculation of power output in loaded squat jump.

    METHODS: Eight methods were used simultaneously in data collection: vertical ground reaction force (VGRF), ground reaction forces (GRF), 1 linear position transducer (1LPT), 1LPT and VGRF (1LPT+VGRF), 2 linear position transducers (2LPTs), 2LPTs and VGRF (2LPTs+VGRF), 5 linear position transducers (5LPTs), 5LPTs and GRF (5LPTs+GRF). Power output was calculated for each lift according to the sensor or sensors used and the results were compared.

    RESULTS: Power output calculated separately with LPTs and GRF method did not differ significantly from combined methods such as 1LPT+VGRF, 2LPTs+VGRF. No significant differences were found when comparing power output between 5LPTs+GRF and combined methods such as 2LPTs+VGRF.

    CONCLUSIONS: This study indicates that test methodology with a simple single linear position transducer setup and or force platform suffice when recording vertical jump such as loaded squat jump.

  • 7.
    Cardinale, Daniele A.
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology.
    Ekblom, Björn
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Björn Ekblom's research group.
    Hyperoxia for performance and training.2018In: Journal of Sports Sciences, ISSN 0264-0414, E-ISSN 1466-447X, no 13, p. 1515-1522Article in journal (Refereed)
    Abstract [en]

    Recent technological developments have made it possible to use hyperoxia as an enhancement aid during training. Athletes wearing a mask can breathe a higher fraction of oxygen from a stationary or portable apparatus while exercising. A large body of evidence indicates that the oxygen transport capacity, lactate metabolism, power output and work tolerance (endurance) are improved when breathing hyperoxia. The physiological mechanisms underlying these performance improvements, although still not fully elucidated, are based on higher oxygen delivery and reduced central fatigue. Although much is known about the acute effects of hyperoxia, the effect of hyperoxic-supplemented endurance training on performance and the mechanisms beneath training adaptations are not very well understood, especially in well-trained endurance athletes. The few studies on the physiological effects of hyperoxia training have been conducted with conflicting results, discussed in this paper. Potential detrimental effects have not yet been shown experimentally and warrant further investigation.

  • 8.
    Cardinale, Daniele A.
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics. Elite Performance Centre, Bosön, Lidingö, Sweden.
    Gejl, Kasper D
    University of Southern Denmark, Odense, Denmark..
    Petersen, Kristine Grøsfjeld
    University of Southern Denmark, Odense, Denmark..
    Nielsen, Joachim
    University of Southern Denmark, Odense, Denmark..
    Ørtenblad, Niels
    University of Southern Denmark, Odense, Denmark..
    Larsen, Filip J
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Short term intensified training temporarily impairs mitochondrial respiratory capacity in elite endurance athletes.2021In: Journal of applied physiology, ISSN 8750-7587, E-ISSN 1522-1601, Vol. 131, no 1, p. 388-400Article in journal (Refereed)
    Abstract [en]

    AIM: The maintenance of healthy and functional mitochondria is the result of a complex mitochondrial turnover and herein quality-control program which includes both mitochondrial biogenesis and autophagy of mitochondria. The aim of this study was to examine the effect of an intensified training load on skeletal muscle mitochondrial quality control in relation to changes in mitochondrial oxidative capacity, maximal oxygen consumption and performance in highly trained endurance athletes.

    METHODS: 27 elite endurance athletes performed high intensity interval exercise followed by moderate intensity continuous exercise 3 days per week for 4 weeks in addition to their usual volume of training. Mitochondrial oxidative capacity, abundance of mitochondrial proteins, markers of autophagy and antioxidant capacity of skeletal muscle were assessed in skeletal muscle biopsies before and after the intensified training period.

    RESULTS: The intensified training period increased several autophagy markers suggesting an increased turnover of mitochondrial and cytosolic proteins. In permeabilized muscle fibers, mitochondrial respiration was ~20 % lower after training although some markers of mitochondrial density increased by 5-50%, indicative of a reduced mitochondrial quality by the intensified training intervention. The antioxidative proteins UCP3, ANT1, and SOD2 were increased after training, whereas we found an inactivation of aconitase. In agreement with the lower aconitase activity, the amount of mitochondrial LON protease that selectively degrades oxidized aconitase, was doubled.

    CONCLUSION: Together, this suggests that mitochondrial respiratory function is impaired during the initial recovery from a period of intensified endurance training while mitochondrial quality control is slightly activated in highly trained skeletal muscle.

  • 9.
    Cardinale, Daniele A
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll. Elite Performance Centre, Bosön.
    Gejl, Kasper D
    University of Southern Denmark.
    Ørtenblad, Niels
    University of Southern Denmark.
    Ekblom, Bjorn
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Björn Ekblom's research group.
    Blomstrand, Eva
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Eva Blomstrand's research group.
    Larsen, Filip J
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Reliability of maximal mitochondrial oxidative phosphorylation in permeabilized fibers from the vastus lateralis employing high-resolution respirometry.2018In: Physiological Reports, E-ISSN 2051-817X, Vol. 6, no 4, article id e13611Article in journal (Refereed)
    Abstract [en]

    The purpose was to assess the impact of various factors on methodological errors associated with measurement of maximal oxidative phosphorylation (OXPHOS) in human skeletal muscle determined by high-resolution respirometry in saponin-permeabilized fibers. Biopsies were collected from 25 men to assess differences in OXPHOS between two muscle bundles and to assess the correlation between OXPHOS and the wet weight of the muscle bundle. Biopsies from left and right thighs of another five subjects were collected on two occasions to compare limbs and time-points. A single muscle specimen was used to assess effects of the anesthetic carbocaine and the influence of technician. The difference in OXPHOS between two fiber-bundles from the same biopsy exhibited a standard error of measurement (SEM) of 10.5 pmol · s-1  · mg-1 and a coefficient of variation (CV) of 15.2%. The differences between left and right thighs and between two different time-points had SEMs of 9.4 and 15.2 pmol · s-1  · mg-1 and CVs of 23.9% and 33.1%, respectively. The average (±SD) values obtained by two technicians monitoring different bundles of fibers from the same biopsy were 31.3 ± 7.1 and 26.3 ± 8.1 pmol · s-1  · mg-1 . The time that elapsed after collection of the biopsy (up to a least 5 h in preservation medium), wet weight of the bundle (from 0.5 to 4.5 mg) and presence of an anesthetic did not influence OXPHOS. The major source of variation in OXPHOS measurements is the sample preparation. The thigh involved, time-point of collection, size of fiber bundles, and time that elapsed after biopsy had minor or no effect.

  • 10.
    Cardinale, Daniele A.
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics. Elite Performance Centre, Bosön. Swedish Sports Confederation, Lidingö, Sweden.
    Horwath, Oscar
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Elings-Knutsson, Jona
    Karolinska Institutet, Stockholm, Sweden,.
    Helge, Torbjörn
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Godhe, Manne
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Bermon, Stéphane
    LAMHESS, Université Côte d’Azur, Nice, France.
    Moberg, Marcus
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Flockhart, Mikael
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Larsen, Filip J
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Hirschberg, Angelica Lindén
    Karolinska institutet, Stockholm, Sweden.
    Ekblom, Björn
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Enhanced Skeletal Muscle Oxidative Capacity and Capillary-to-Fiber Ratio Following Moderately Increased Testosterone Exposure in Young Healthy Women2020In: Frontiers in Physiology, E-ISSN 1664-042X, Vol. 11, article id 585490Article in journal (Refereed)
    Abstract [en]

    Background: Recently, it was shown that exogenously administered testosterone enhances endurance capacity in women. In this study, our understanding on the effects of exogenous testosterone on key determinants of oxygen transport and utilization in skeletal muscle is expanded.Methods: In a double-blinded, randomized, placebo-controlled trial, 48 healthy active women were randomized to 10 weeks of daily application of 10 mg of testosterone cream or placebo. Before and after the intervention, VO<sub>2</sub> max, body composition, total hemoglobin (Hb) mass and blood volumes were assessed. Biopsies from the vastus lateralis muscle were obtained before and after the intervention to assess mitochondrial protein abundance, capillary density, capillary-to-fiber (C/F) ratio, and skeletal muscle oxidative capacity.Results: Maximal oxygen consumption per muscle mass, Hb mass, blood, plasma and red blood cell volumes, capillary density, and the abundance of mitochondrial protein levels (i.e., citrate synthase, complexes I, II, III, IV-subunit 2, IV-subunit 4, and V) were unchanged by the intervention. However, the C/F ratio, specific mitochondrial respiratory flux activating complex I and linked complex I and II, uncoupled respiration and electron transport system capacity, but not leak respiration or fat respiration, were significantly increased following testosterone administration compared to placebo.Conclusion: This study provides novel insights into physiological actions of increased testosterone exposure on key determinants of oxygen diffusion and utilization in skeletal muscle of women. Our findings show that higher skeletal muscle oxidative capacity coupled to higher C/F ratio could be major contributing factors that improve endurance performance following moderately increased testosterone exposure.

  • 11.
    Cardinale, Daniele A.
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology.
    Larsen, Filip J
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Jensen-Urstad, M
    Karolinska institutet.
    Rullman, E
    Karolinska institutet.
    Søndergaard, H
    Rigshospitalet, Köpenhamn, Danmark.
    Morales-Alamo, D
    University of Las Palmas de Gran Canaria, Spanien.
    Ekblom, Björn
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Björn Ekblom's research group.
    Calbet, J A L
    University of Las Palmas de Gran Canaria, Spanien.
    Boushel, Robert
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology. University of British Columbia, Vancouver, British Columbia, Canada.
    Muscle mass and inspired oxygen influence oxygen extraction at maximal exercise: role of mitochondrial oxygen affinity.2019In: Acta Physiologica, ISSN 1748-1708, E-ISSN 1748-1716, Vol. 225, no 1, article id e13110Article in journal (Refereed)
    Abstract [en]

    AIM:We examined the Fick components together with mitochondrial O2 affinity (p50mito ) in defining O2 extraction and O2 uptake during exercise with large and small muscle mass during normoxia (NORM) and hyperoxia (HYPER).

    METHODS:Seven individuals performed two incremental exercise tests to exhaustion on a bicycle ergometer (BIKE) and two on a one-legged knee extension ergometer (KE) in NORM or HYPER. Leg blood flow and VO2 were determined by thermodilution and the Fick method. Maximal ADP-stimulated mitochondrial respiration (OXPHOS) and p50mito were measured ex vivo in isolated mitochondria. Mitochondrial excess capacity in the leg was determined from OXPHOS in permeabilized fibers and muscle mass measured with magnetic resonance imaging in relation to peak leg O2 delivery.

    RESULTS:The ex vivo p50mito increased from 0.06±0.02 to 0.17±0.04 kPa with varying substrate supply and O2 flux rates from 9.84±2.91 to 16.34±4.07 pmol O2 ·s-1 ·μg-1 respectively. O2 extraction decreased from 83% in BIKE to 67% in KE as a function of a higher O2 delivery, and lower mitochondrial excess capacity. There was a significant relationship between O2 extraction and mitochondrial excess capacity and p50mito that was unrelated to blood flow and mean transit time.

    CONCLUSION:O2 extraction varies with mitochondrial respiration rate, p50mito and O2 delivery. Mitochondrial excess capacity maintains a low p50mito which enhances O2 diffusion from microvessels to mitochondria during exercise. This article is protected by copyright. All rights reserved.

  • 12.
    Cardinale, Daniele A.
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology.
    Larsen, Filip J
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Lindholm, Peter
    Karolinska Institutet, Stockholm, Sweden..
    Ekblom, Björn
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Björn Ekblom's research group.
    Boushel, Robert
    Univ British Columbia, Vancouver, BC, Canada..
    Effects Of Hyperoxic-Supplemented High Intensity Interval Training On Endurance Performance, Maximal Oxygen Consumption And Mitochondrial Function In Trained Cyclists2019In: MEDICINE AND SCIENCE IN SPORTS AND EXERCISE Vol 51(2019):6. Supplement: S, Meeting Abstract: 1753, Lippincott Williams & Wilkins, 2019, Vol. 51, no 6, p. 463-464Conference paper (Other academic)
  • 13.
    Cardinale, Daniele A.
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Larsen, Filip J
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Lännerström, Johan
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences.
    Manselin, Tom
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences.
    Södergård, Olof
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences.
    Mijwel, Sara
    Karolinska institutet, Sweden.
    Lindholm, P
    Karolinska institutet, Sweden.
    Ekblom, Björn
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Björn Ekblom's research group.
    Boushel, Robert
    University of British Columbia, Vancouver, BC, Canada..
    Influence of Hyperoxic-Supplemented High-Intensity Interval Training on Hemotological and Muscle Mitochondrial Adaptations in Trained Cyclists.2019In: Frontiers in Physiology, E-ISSN 1664-042X, Vol. 10, article id 730Article in journal (Refereed)
    Abstract [en]

    Background: Hyperoxia (HYPER) increases O2 carrying capacity resulting in a higher O2 delivery to the working muscles during exercise. Several lines of evidence indicate that lactate metabolism, power output, and endurance are improved by HYPER compared to normoxia (NORM). Since HYPER enables a higher exercise power output compared to NORM and considering the O2 delivery limitation at exercise intensities near to maximum, we hypothesized that hyperoxic-supplemented high-intensity interval training (HIIT) would upregulate muscle mitochondrial oxidative capacity and enhance endurance cycling performance compared to training in normoxia. Methods: 23 trained cyclists, age 35.3 ± 6.4 years, body mass 75.2 ± 9.6 kg, height 179.8 ± 7.9 m, and VO2max 4.5 ± 0.7 L min-1 performed 6 weeks polarized and periodized endurance training on a cycle ergometer consisting of supervised HIIT sessions 3 days/week and additional low-intensity training 2 days/week. Participants were randomly assigned to either HYPER (FIO2 0.30; n = 12) or NORM (FIO2 0.21; n = 11) breathing condition during HIIT. Mitochondrial respiration in permeabilized fibers and isolated mitochondria together with maximal and submaximal VO2, hematological parameters, and self-paced endurance cycling performance were tested pre- and posttraining intervention. Results: Hyperoxic training led to a small, non-significant change in performance compared to normoxic training (HYPER 6.0 ± 3.7%, NORM 2.4 ± 5.0%; p = 0.073, ES = 0.32). This small, beneficial effect on the self-paced endurance cycling performance was not explained by the change in VO2max (HYPER 1.1 ± 3.8%, NORM 0.0 ± 3.7%; p = 0.55, ES = 0.08), blood volume and hemoglobin mass, mitochondrial oxidative phosphorylation capacity (permeabilized fibers: HYPER 27.3 ± 46.0%, NORM 16.5 ± 49.1%; p = 0.37, ES = 3.24 and in isolated mitochondria: HYPER 26.1 ± 80.1%, NORM 15.9 ± 73.3%; p = 0.66, ES = 0.51), or markers of mitochondrial content which were similar between groups post intervention. Conclusions: This study showed that 6 weeks hyperoxic-supplemented HIIT led to marginal gain in cycle performance in already trained cyclists without change in VO2max, blood volume, hemoglobin mass, mitochondrial oxidative phosphorylation capacity, or exercise efficiency. The underlying mechanisms for the potentially meaningful performance effects of hyperoxia training remain unexplained and may raise ethical questions for elite sport.

  • 14.
    Cardinale, Daniele A.
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Larsen, Filip J
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Schiffer, Tomas A
    Karolinska Institute.
    Morales-Alamo, David
    University of Las Palmas de Gran Canaria.
    Ekblom, Björn
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Björn Ekblom's research group.
    Calbet, Jose A L
    University of Las Palmas de Gran Canaria.
    Holmberg, Hans-Christer
    Mid Sweden University, Östersund, The University of British Columbia, Vancouver, BC, Canada..
    Boushel, Robert
    The University of British Columbia, Vancouver, BC, Canada..
    Superior Intrinsic Mitochondrial Respiration in Women Than in Men.2018In: Frontiers in Physiology, E-ISSN 1664-042X, Vol. 9, article id 1133Article in journal (Refereed)
    Abstract [en]

    Sexual dimorphism is apparent in humans, however, to date no studies have investigated mitochondrial function focusing on intrinsic mitochondrial respiration (i.e., mitochondrial respiration for a given amount of mitochondrial protein) and mitochondrial oxygen affinity (p50mito) in relation to biological sex in human. A skeletal muscle biopsy was donated by nine active women, and ten men matched for maximal oxygen consumption (VO2max) and by nine endurance trained men. Intrinsic mitochondrial respiration, assessed in isolated mitochondria, was higher in women compared to men when activating complex I (CIP) and complex I+II (CI+IIP) (p < 0.05), and was similar to trained men (CIP, p = 0.053; CI+IIP, p = 0.066). Proton leak and p50mito were higher in women compared to men independent of VO2max. In conclusion, significant novel differences in mitochondrial oxidative function, intrinsic mitochondrial respiration and p50mito exist between women and men. These findings may represent an adaptation in the oxygen cascade in women to optimize muscle oxygen uptake to compensate for a lower oxygen delivery during exercise.

  • 15.
    Cardinale, Daniele A.
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences.
    Larsen, F.J.
    Lännerström, J.
    Manselin, T.
    Södergård, O.
    Mijwel, S.
    Lindholm, P.
    Ekblom, B.
    Boushel, R
    Influence of hyperoxic-supplemented high-intensity interval training on training adaptation in trained cyclistsManuscript (preprint) (Other academic)
  • 16.
    Cardinale, Daniele A.
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll. Elite Performance Centre, Bosön.
    Lilja, Mats
    Karolinska institutet.
    Mandic, Mirko
    Karolinska institutet.
    Gustafsson, Thomas
    Karolinska institutet.
    Larsen, Filip J.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Lundberg, Tommy R.
    Karolinska institutet.
    Resistance Training with Co-ingestion of Anti-inflammatory Drugs Attenuates Mitochondrial Function2017In: Frontiers in Physiology, E-ISSN 1664-042X, Vol. 8, article id 1074Article in journal (Refereed)
    Abstract [en]

    Aim: The current study aimed to examine the effects of resistance exercise with concomitant consumption of high versus low daily doses of non-steroidal anti-inflammatory drugs (NSAIDs) on mitochondrial oxidative phosphorylation in skeletal muscle. As a secondary aim, we compared the effects of eccentric-overload with conventional training. Methods: Twenty participants were randomized to either a group taking high doses (3 x 400 mg/day) of ibuprofen (IBU; 27±5 yr; n=11) or a group ingesting a low dose (1 x 75 mg/day) of acetylsalicylic acid (ASA; 26±4 yr; n=9) during 8 weeks of supervised knee extensor resistance training. Each of the subject’s legs were randomized to complete the training program using either a flywheel (FW) device emphasizing eccentric-overload, or a traditional weight stack machine (WS). Maximal mitochondrial oxidative phosphorylation (CI+IIP) from permeabilized skeletal muscle bundles was assessed using high-resolution respirometry. Citrate synthase (CS) activity was assessed using spectrophotometric techniques and mitochondrial protein content using western blotting. Results: After training, CI+IIP decreased (P<0.05) in both IBU (23%) and ASA (29%) with no difference across medical treatments. Although CI+IIP decreased in both legs, the decrease was greater (interaction p = 0.015) in WS (33%, p = 0.001) compared with FW (19%, p = 0.078). CS activity increased (p = 0.027) with resistance training, with no interactions with medical treatment or training modality. Protein expression of ULK1 increased with training in both groups (p < 0.001). The increase in quadriceps muscle volume was not correlated with changes in CI+IIP (R=0.16). Conclusion: These results suggest that 8 weeks of resistance training with co-ingestion of anti-inflammatory drugs reduces mitochondrial function but increases mitochondrial content. The observed changes were not affected by higher doses of NSAIDs consumption, suggesting that the resistance training intervention was the prime mediator of the decreased mitochondrial phosphorylation. Finally, we noted that flywheel resistance training, emphasizing eccentric overload, rescued some of the reduction in mitochondrial function seen with conventional resistance training.

  • 17.
    Cardinale, Daniele A.
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Nilsson, Johnny
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control. Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, The Laboratory of Applied Sports Science (LTIV).
    Cardinale, Marco
    Comparative multiple sensor approach for power calculation in loaded squat jump and power clean2013In: Comparative multiple sensor approach for power calculation in loaded squat jump and power clean, 2013Conference paper (Refereed)
    Abstract [en]

    Introduction

    Power output is a critical component of athletic performance (McGuigan et al., 2012); therefore, strength and conditioning specialists are nowadays employed to help athletes increase the power-generating capacity in specific motor tasks. Due to the widespread need to assess power output in common strength training exercises, the development and validation of various assessment approaches has led to studies aimed at identifying the external optimal load (OL) to maximize power output (Cormie et al., 2007). The aim of this study was to compare conventionally used linear position transducer and force plate based methods with a new methodology for calculation of peak power (PP) and average power (AP) output in conjunction with the load-power relationship.

    Methods

    Nineteen male elite athletes performed loaded squat jump (LSJ) and power clean (PC) with different external loads to determine the load/power relationship. Nine methods were used simultaneously in data collection: vertical ground reaction force (VGRF), ground reaction force (GRF) i.e. vertical, anterio-posterior and medio-lateral reaction force components, 1 linear encoder (1Encoder), 1 linear position transducer (1LPT), 1LPT and VGRF (1LPT+VGRF), 2 linear position transducers (2LPTs), 2LPTs and VGRF (2LPTs+VGRF), 5 linear position transducers (5LPTs), 5LPTs and GRF (5LPTs+GRF; novel method). Power output was calculated for each lift according to the sensor or sensors simultaneously used and the results were compared.

    Results

    Power output calculated separately with LPTs and GRF method differed significantly from combined methods such as 1LPT+VGRF, 2LPTs+VGRF, and 5LPTs+GRF (novel method). The optimal load in LSJ and PC with respect to PP output was identified at loads between 30 and 50% of their body mass (bm), respectively; and with respect to AP output equal to loads between 85 and 75% of bm, respectively.

    Discussion

    This study indicates that test methodology influences the results of the power output and the load–power relationship in LSJ and PC exercises. The results of this study suggest the possibility that the combined methods provide a better representation of muscle power generation during dynamic movements involving the non-linear trajectories of the barbell than kinematic or kinetic methods alone.

    References

    Cormie, P., McBride, J. M., & McCaulley, G. O. (2007). J Appl Biomech, 23(2), 103-118. McGuigan. (2012). Strength and Power Assessment Protocols. Physiological Tests for Elite Athletes (2nd ed., pp. 207-230). Stanningley Leeds, United Kingdom: Human Kinetics.

  • 18.
    Cardinale, Daniele
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Boushel, Robert
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Ekblom-Bak, Elin
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, The Research Unit for Movement, Health and Environment.
    Is the Ekblom-Bak Test a valid screening tool for Vo2peak in highly active individuals?2015Conference paper (Refereed)
    Abstract [en]

    Introduction

    Maximal oxygen consumption testing is suggested to be regularly included between training blocks of athletes in order to monitor changes in fitness throughout the season. However, despite the good reliability and validity of this physiological test, an expensive metabolic chart, and expert personnel are needed. Further, the maximal effort needed by the athlete makes this test difficult to be performed routinely. Therefore, it is important to develop valid tools that are also feasible for the estimation of the maximal oxygen consumption. The aim of this study was to validate the Ekblom-Bak test (EBT) (Ekblom-Bak et al., 2014) against an incremental test measuring peak VO2 by gas exchange on a cycle ergometer in well-trained individuals.

    Methods

    33 highly active individuals aged 34.5±6.6yrs (mean ± standard deviation (SD)) body mass 74.5±12kg, and height; 178± 9.3m) participated in the study. The EBT test was performed prior to the incremental exercise test to peak effort on a cycle ergometer for VO2peak assessment. Oxygen uptake was determined by an automated measuring system for oxygen uptake with a mixing chamber (OxygenPro, Jaeger GmbH, Germany) validated against the Douglas bag method resulting in a typical error of 2%. The mean difference and standard deviation of the differences between the EBT and measured VO2peak was calculated with Bland-Altman analysis.

    Results

    The measured mean and SD VO2peak was 4.1±0.8 L•min-1 for the whole group (male 4.4±0.6 L•min-1 and female 2.9±0.5 L•min-1). The mean differences between measured and estimated (EBT) VO2peak was 0.05 L•min-1 (95% CI; -0.15 to 0.25). CV was 13.2% in the whole group with no significant differences between sexes. For individuals with a VO2peak within the valid range of the EBT (VO2max 1.56 to 4.49 L•min-1, n=23), the mean differences between measured and estimate VO2peak was -0.22 L•min-1 (95% CI; -0.36 to -0.08), resulting in a CV of 8.2%. For individuals above the valid limit (n=10), the mean difference was 0.68L•min-1(95% CI; 0.47 to 0.98) with a CV of 6.9%. Discussion The Ekblom-Bak test is an easily applied and inexpensive screening tool for a population of highly active individuals within the current validity range, and may be used routinely in monitoring fitness.

    References

    Ekblom-Bak E, Björkman F, Hellenius ML, Ekblom B (2014). Scand J Med Sci Sports, 24(2), 319-326

  • 19.
    Cardinale, Daniele
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Lilja, Mats
    Karolinska Institutet, Stockholm, Sweden..
    Mandic, Mirko
    Karolinska Institutet, Stockholm, Sweden..
    Gustafsson, Thomas
    Karolinska Institutet, Stockholm, Sweden..
    Larsen, Filip J.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Lundberg, Tommy R.
    Karolinska Institutet Stockholm, Sweden..
    Resistance Exercise Attenuates Mitochondrial Function: Effects Of NSAID Intake And Eccentric-Overload Training2017In: Medicine & Science in Sports & Exercise. 49(5S):329, MAY 2017, 2017, Vol. 49, no 5, p. 329-329Conference paper (Refereed)
    Abstract [en]

    Although nonsteroidal antiinflammatorydrugs (NSAIDs) have been shown to modulate skeletal muscle adaptations and protein metabolism in response toresistance exercise, little is known about the effects of NSAIDs on mitochondrial function. Thus, the current study aimed to examine the effects of resistanceexercise with concomitant NSAID consumption on mitochondrial oxidative phosphorylation in skeletal muscle. Twenty participants were randomized in asingleblindedfashion to either an experimental group receiving ibuprofen (IBU: 27±5 yr; n=11; 1200 mg/d) or a control group receiving a lowdoseacetylsalicylic acid (CON: 26±4 yr; n=9; 75 mg/d) During this period, subjects performed 8 weeks of supervised resistance exercise involving the kneeextensors muscles. Each of the subject’s legs were randomized to complete the training program using either a flywheel (FW) device emphasizing eccentricoverload,or a traditional weight stack machine (WS). Maximal mitochondrial oxidative phosphorylation (OXPHOS) from permeabilized skeletal muscle bundleswas assessed using high resolution respirometry before and after the training intervention. Citrate synthase activity was assessed using spectrophotometrictechniques. After training, OXPHOS decreased (P<0.05) in both IBU (23%) and CON (29%) with no difference across medical treatments. Although OXPHOSdecreased in both legs, the decrease was greater (interaction P= 0.015) in WS (33%, P= 0.015) than in FW (19%, P= 0.078). Citrate synthase (CS) did notchange after the intervention. The increase in quadriceps muscle volume was not significantly correlated with the change in OXPHOS (R=0.15). These resultssuggest that 1) eight weeks of resistance training reduces mitochondrial function but not mitochondrial content, 2) The decreased mitochondrial function withresistance exercise was not affected by ibuprofen consumption, 3) flywheel resistance training, emphasizing eccentric overload, rescues some of thereduction in mitochondrial function seen with conventional resistance training.

  • 20.
    Gejl, Kasper Degn
    et al.
    University of Southern Denmark.
    Thams, Line
    University of Southern Denmark.
    Hansen, Mette
    Aarhus University, Aarhus, Denmark.
    Rokkedal-Lausch, Torben
    Aalborg University, Aalborg, Denmark.
    Plomgaard, Peter
    Rigshospitalet, Copenhagen, Denmark.
    Nybo, Lars
    University of Copenhagen, Copenhagen Denmark.
    Larsen, Filip J
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll. Karolinska Institute.
    Cardinale, Daniele A
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Jensen, Kurt
    University of Southern Denmark.
    Holmberg, Hans-Christer
    Mid Sweden University, Östersund, Sweden.
    Vissing, Kristian
    Aarhus University, Aarhus, Denmark.
    Ørtenblad, Niels
    University of Southern Denmark.
    No Superior Adaptations to Carbohydrate Periodization in Elite Endurance Athletes.2017In: Medicine & Science in Sports & Exercise, ISSN 0195-9131, E-ISSN 1530-0315, Vol. 49, no 12, p. 2486-2497Article in journal (Refereed)
    Abstract [en]

    PURPOSE: The present study investigated the effects of periodic CHO restriction on endurance performance and metabolic markers in elite endurance athletes.

    METHODS: Twenty-six male elite endurance athletes (VO2max: 65.0 ml O2[BULLET OPERATOR]kg[BULLET OPERATOR]min) completed 4 weeks of regular endurance training, while matched and randomized into two groups training with (Low) or without (High) carbohydrate (CHO) manipulation three days a week. The CHO manipulation days consisted of a 1-hr high intensity bike session in the morning, recovery for 7 hrs while consuming isocaloric diets containing either high CHO (414±2.4 g) or low CHO (79.5±1.0 g), and a 2-hr moderate bike session in the afternoon with or without CHO. VO2max, maximal fat oxidation and power output during a 30-min time trial (TT) were determined before and after the training period. The TT was undertaken after 90 mins of intermittent exercise with CHO provision before the training period and both CHO and placebo after the training period. Muscle biopsies were analyzed for glycogen, citrate synthase (CS) and β-hydroxyacyl-coenzyme A dehydrogenase (HAD) activity, carnitine palmitoyltransferase (CPT1b) and phosphorylated acetyl-CoA carboxylase (pACC).

    RESULTS: The training effects were similar in both groups for all parameters. On average, VO2max and power output during the 30-min TT increased by 5 ± 1% (P<0.05) and TT performance was similar after CHO and placebo during the preload phase. Training promoted overall increases in glycogen content (18 ± 5%), CS activity (11 ± 5%) and pACC (38 ± 19%) (P<0.05) with no differences between groups. HAD activity and CPT1b protein content remained unchanged.

    CONCLUSION: Superimposing periodic CHO restriction to 4 weeks of regular endurance training had no superior effects on performance and muscle adaptations in elite endurance athletes.

  • 21. Gullstrand, Lennart
    et al.
    Lindberg, Thomas
    Cardinale, Daniele
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Tarassova, Olga
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Bjerkefors, Anna
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Validation of a kayak ergometer power output2013Conference paper (Refereed)
    Abstract [en]

    Introduction

    It is of a significant interest that ergometers used for evaluating elite athletes are valid and reliable. In this study the aim was to investigate how well displayed power output on a widely used kayak ergometer, DS, (Dansprint ApS, DK) related to a validation setup. Previously Gore et al. (2013) described the accuracy of 12 of the same ergometer using a motor driven calibration rig simulating power between 50 up to 450 W. They found that the ergometers underestimated true mean power with 21-23%. The reference rig simulated a 1 dimensional (1D) movement; this study however, is based on 3D analysis, which was hypothesized to better describe real paddling movement’s and allow more precise power calculations.

    Methods

    Two male national team kayakers took part in the study performing workloads from 70 up to 500 W (+30 W/stage) two times with 3 days between the measurement sessions. They were instructed to target the desired workloads displayed during 35 s bouts. The reference method included a ProReflex optoelectronic system (Qualisys AB, Gothenburg, Sweden) and force transducers (LCM 200, Futek Inc, Ca, US). The force transducers were connected with the rope from ergometer flywheel close to each end of the ergometer paddle to continuously measure force during the bouts of work. The kinematic set-up included eight cameras placed around the ergometer and two reflective markers were attached close to each force transducer.

    Results

    The reference method used here showed that the validated ergometer underestimated power with 37.7 % over the whole measured range compared to the reference method. The difference was systematic (r2=0.989) and the linear regression model could be applied (DS power = -2.362+0.628*x). When applying a 1D analysis of the collected data, it coincided with the results from Gore et al. (2013).

    Discussion

    The data suggest that 1. The measurement solution and/or calculation for describing power output in the DS have limitations. 2. The testing rig referred to in the Introduction (Gore et al. 2013) do not fully estimate true power and 3. The reference method used here is suggested to more exactly represent true paddling power as it includes a 3D movement analysis and close to original paddling simulation set-up. Both reference methods (1D and 3D analysis) show linear differences vs. the DS ergometer, giving an option to adjust the displayed power to a true power produced by elite-athletes.

  • 22.
    Lännerström, Johan
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Nilsson, Lina C
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Cardinale, Daniele A.
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics. The Swedish Sports Confederation, Stockholm, Sweden.
    Björklund, Glenn
    Mid Sweden University, Östersund, Sweden; The Swedish Sports Confederation, Stockholm, Sweden.
    Larsen, Filip J
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Effects of Plyometric Training on Soft and Hard Surfaces for Improving Running Economy.2021In: Journal of Human Kinetics, ISSN 1640-5544, E-ISSN 1899-7562, Vol. 79, no 1, p. 187-196Article in journal (Refereed)
    Abstract [en]

    The present study investigated the effects of plyometric jump training on hard and soft surfaces on running economy (RE), maximal oxygen uptake (VO2max), running performance and the rate of force development in orienteers. Nineteen orienteers (11 women and 8 men, body mass 61.1 ± 7.3 kg, age 21 ± 5.8 yrs) were randomly stratified based on sex, age, VO2max and RE to plyometric jumping training (8 sessions over 4 weeks) on either a hard or a soft surface. RE, VO2max and running performance were assessed on a treadmill and outdoor on- and off-trail loops. Moreover, ground reaction forces and force development were assessed during a one leg drop-jump test. The training intervention led to an overall 2-7% improvement in treadmill and off-trail RE, independent of the jumping surface and running velocity assessed. These improvements were not explained by force development during drop jump tests, which remained unchanged following the intervention. The changes in time-trial performance were associated with changes in RE. Plyometric training improved RE with no difference between the hard or the soft training surface and improved RE was also independent of the running speed assessed. Furthermore, improved running performance was associated with changes in RE after the intervention.

    Download full text (pdf)
    fulltext
  • 23.
    Mijwel, S.
    et al.
    Karolinska Institutet.
    Cardinale, Daniele A.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology.
    Ekblom Bak, Elin
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology.
    Sundberg, C. J.
    Karolinska Institutet.
    Wengstrom, Y.
    Karolinska Institutet.
    Rundqvist, H.
    Karolinska Institutet.
    Validation of two submaximal exercise tests in breast cancer patients undergoing chemotherapy treatment2015In: European Journal of Cancer (ISSN 0959-8049), 2015, Vol. 51, p. S300-S301Conference paper (Other academic)
  • 24.
    Mijwel, Sara
    et al.
    Karolinska Institutet.
    Cardinale, Daniele A.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Norrbom, Jessica
    Karolinska Institutet.
    Chapman, Mark
    Karolinska Institutet.
    Ivarsson, Niklas
    Karolinska Institutet.
    Wengström, Yvonne
    Karolinska Institutet.
    Sundberg, Carl Johan
    Karolinska Institutet.
    Rundqvist, Helene
    Karolinska Institutet.
    Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer.2018In: The FASEB Journal, ISSN 0892-6638, E-ISSN 1530-6860, Vol. 32, no 10, p. 5495-5505, article id fj201700968RArticle in journal (Refereed)
    Abstract [en]

    Exercise has been suggested to ameliorate the detrimental effects of chemotherapy on skeletal muscle. The aim of this study was to compare the effects of different exercise regimens with usual care on skeletal muscle morphology and mitochondrial markers in patients being treated with chemotherapy for breast cancer. Specifically, we compared moderate-intensity aerobic training combined with high-intensity interval training (AT-HIIT) and resistance training combined with high-intensity interval training (RT-HIIT) with usual care (UC). Resting skeletal muscle biopsies were obtained pre- and postintervention from 23 randomly selected women from the OptiTrain breast cancer trial who underwent RT-HIIT, AT-HIIT, or UC for 16 wk. Over the intervention, citrate synthase activity, muscle fiber cross-sectional area, capillaries per fiber, and myosin heavy chain isoform type I were reduced in UC, whereas RT-HIIT and AT-HIIT were able to counteract these declines. AT-HIIT promoted up-regulation of the electron transport chain protein levels vs. UC. RT-HIIT favored satellite cell count vs. UC and AT-HIIT. There was a significant association between change in citrate synthase activity and self-reported fatigue. AT-HIIT and RT-HIIT maintained or improved markers of skeletal muscle function compared with the declines found in the UC group, indicating a sustained trainability in addition to the preservation of skeletal muscle structural and metabolic characteristics during chemotherapy. These findings highlight the importance of supervised exercise programs for patients with breast cancer during chemotherapy.-Mijwel, S., Cardinale, D. A., Norrbom, J., Chapman, M., Ivarsson, N., Wengström, Y., Sundberg, C. J., Rundqvist, H. Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer.

  • 25. Mijwel, Sara
    et al.
    Cardinale, Daniele
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.
    Ekblom-Bak, Elin
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Björn Ekblom's research group.
    Sundberg, Carl Johan
    Wengström, Yvonne
    Rundqvist, Helene
    Validation of 2 Submaximal Cardiorespiratory Fitness Tests in Patients With Breast Cancer Undergoing Chemotherapy.2016In: Rehabilitation oncology (American Physical Therapy Association. Oncology Section), ISSN 2168-3808, Vol. 34, no 4, p. 137-143Article in journal (Refereed)
    Abstract [en]

    Patients with breast cancer have an impaired cardiorespiratory fitness, in part, due to the toxic effects of anticancer therapy. Physical exercise as a means of rehabilitation for patients with cancer is an emerging area of research and treatment, emphasizing the need for accurate and feasible physical capacity measurements. The purpose of this study was to evaluate the validity of peak oxygen consumption (o2peak) predicted by the Ekblom-Bak test (E-B) and the Åstrand-Rhyming prediction model (A-R).

    METHODS: Eight patients with breast cancer undergoing chemotherapy participated in the study. Submaximal exercise tests were performed at 2 different submaximal workloads. Estimated o2peak values were obtained by inserting the heart rate (HR) from the 2 workloads into the E-B prediction model and the HR of only the higher workload into the Åstrand nomogram. A 20-W incremental cycle test-to-peak effort was performed to obtain o2peak values.

    RESULTS: Results from A-R overestimated o2peak by 6% (coefficient of variation = 7%), whereas results from E-B overestimated o2peak with 42% (coefficient of variation = 21%) compared with measured o2peak. Pearson's correlation coefficient revealed a significant strong relationship between the estimated o2peak from A-R and the measured o2peak (r = 0.86; P < .05), whereas the relationship between the estimated o2peak from E-B and the measured o2peak resulted in a nonsignificant weak correlation (r = 0.21).

    CONCLUSION: In a situation where maximal exercise testing is not practical or undesirable from a patient safety perspective, submaximal exercise testing provides an alternative way of estimating o2peak. The A-R prediction model appears to be a valid submaximal exercise test for determining cardiorespiratory fitness in this population.

    Download full text (pdf)
    fulltext
  • 26.
    Nilsson, Johnny
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences. Högskolan Dalarna.
    Cardinale, Daniele
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences. Riksidrottsförbundet.
    Aerobic and anaerobic test performance among elite male football players in different team positions2015In: LASE Journal of Sport Science, ISSN 1691-7669, E-ISSN 1691-9912, Vol. 6, no 2, p. 73-92Article in journal (Refereed)
    Abstract [en]

    The purpose was to determine the magnitude of aerobic and anaerobic performance factors among elite male football players in different team positions. Thirty-nine players from the highest Swedish division classified as defenders (n=18), midfield players (n=12) or attackers (n=9) participated. Their mean (± sd) age, height and body mass (bm) were 24.4 (±4.7) years, 1.80 (±5.9)m and 79 (±7.6)kg, respectively. Running economy (RE) and anaerobic threshold (AT) was determined at 10, 12, 14, and 16km/h followed by tests of maximal oxygen uptake (VO2max). Maximal strength (1RM) and average power output (AP) was performed in squat lifting. Squat jump (SJ), counter-movement jump with free arm swing (CMJa), 45m maximal sprint and the Wingate test was performed. Average VO2max for the whole population (WP) was 57.0mL O2•kg-1min-1. The average AT occurred at about 84% of VO2max. 1RM per kg bm0.67 was 11.9±1.3kg. Average squat power in the whole population at 40% 1RM was 70±9.5W per kg bm0.67. SJ and CMJa were 38.6±3.8cm and 48.9±4.4cm, respectively. The average sprint time (45m) was 5.78± 0.16s. The AP in the Wingate test was 10.6±0.9W•kg-1. The average maximal oxygen uptake among players in the highest Swedish division was lower compared to international elite players but the Swedish players were better off concerning the anaerobic threshold and in the anaerobic tests. No significant differences were revealed between defenders, midfielders or attackers concerning the tested parameters presented above.

    Download full text (pdf)
    fulltext
  • 27.
    Nilsson, Johnny
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences.
    Cardinale, Daniele
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences.
    Running economy and blood lactate accumulation in elite football players with high and low maximal aerobic power2015In: LASE Journal of Sport Science, ISSN 1691-7669, E-ISSN 1691-9912, Vol. 6, no 2, p. 44-51Article in journal (Refereed)
    Abstract [en]

    The purpose was to determine running economy and lactate threshold among a selection of male elite football players with high and low aerobic power. Forty male elite football players from the highest Swedish division ("Allsvenskan") participated in the study. In a test of running economy (RE) and blood lactate accumulation the participants ran four minutes each at 10, 12, 14, and 16 km•h-1 at horizontal level with one minute rest in between each four minutes interval. After the last sub-maximal speed level the participants got two minutes of rest before test of maximal oxygen uptake (VO2max). Players that had a maximal oxygen uptake lower than the average for the total population of 57.0 mL O2•kg-1•minute-1 were assigned to the low aerobic power group (LAP) (n=17). The players that had a VO2max equal to or higher than 57.0 mL O2•kg-1•minute-1 were selected for the high aerobic power group (HAP) (n=23). The VO2max was significantly different between the HAP and LAP group. The average RE, measured as oxygen uptake at 12, 14 and 16km•h-1 was significantly lower but the blood lactate concentration was significantly higher at 14 and 16 km•h-1for the LAP group compared with the HAP group.

    Download full text (pdf)
    fulltext
  • 28.
    Wengström, Yvonne
    et al.
    Karolinska Institutet.
    Mijwel, Sara
    Karolinska Institutet.
    Cardinale, Daniele A.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology.
    Högintensiv träning hjälper patienter med bröstcancer2018In: Idrottsforskning.se, ISSN 2002-3944, article id 12 novemberArticle in journal (Other (popular science, discussion, etc.))
  • 29.
    Xuan, Xing
    et al.
    KTH Royal Institute of Technology, Stockholm, Sweden; Universidad Católica San Antonio de Murcia, UCAM HiTech, Murcia, Spain..
    Chen, Chen
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Molinero-Fernandez, Agueda
    KTH Royal Institute of Technology, Stockholm, Sweden; Universidad Católica San Antonio de Murcia, UCAM HiTech, Murcia, Spain..
    Ekelund, Emil
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Cardinale, Daniele A.
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Swarén, Mikael
    Dalarna University, Falun, Sweden.
    Wedholm, Lars
    Dalarna University, Falun, Sweden.
    Cuartero, Maria
    KTH Royal Institute of Technology, Stockholm, Sweden; Universidad Católica San Antonio de Murcia, UCAM HiTech, Murcia, Spain..
    Crespo, Gaston A
    KTH Royal Institute of Technology, Stockholm, Sweden; Universidad Católica San Antonio de Murcia, UCAM HiTech, Murcia, Spain..
    Fully Integrated Wearable Device for Continuous Sweat Lactate Monitoring in Sports.2023In: ACS Sensors, E-ISSN 2379-3694, Vol. 8, no 6, p. 2401-2409Article in journal (Refereed)
    Abstract [en]

    The chemical digitalization of sweat using wearable sensing interfaces is an attractive alternative to traditional blood-based protocols in sports. Although sweat lactate has been claimed to be a relevant biomarker in sports, an analytically validated wearable system to prove that has not yet been developed. We present a fully integrated sweat lactate sensing system applicable to in situ perspiration analysis. The device can be conveniently worn in the skin to monitor real-time sweat lactate during sports, such as cycling and kayaking. The novelty of the system is threefold: advanced microfluidics design for sweat collection and analysis, an analytically validated lactate biosensor based on a rational design of an outer diffusion-limiting membrane, and an integrated circuit for signal processing with a custom smartphone application. The sensor covering the range expected for lactate in sweat (1-20 mM), with appropriate sensitivity (-12.5 ± 0.53 nA mM-1), shows an acceptable response time (<90 s), and the influence of changes in pH, temperature, and flow rate are neglectable. Also, the sensor is analytically suitable with regard to reversibility, resilience, and reproducibility. The sensing device is validated through a relatively high number of on-body tests performed with elite athletes cycling and kayaking in controlled environments. Correlation outcomes between sweat lactate and other physiological indicators typically accessible in sports laboratories (blood lactate, perceived exhaustion, heart rate, blood glucose, respiratory quotient) are also presented and discussed in relation to the sport performance monitoring capability of continuous sweat lactate.

    Download full text (pdf)
    fulltext
1 - 29 of 29
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf