Gymnastik- och idrottshögskolan, GIH

Change search
Refine search result
1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Danielsson, Tom
    et al.
    Carlsson, Jörg
    Schreyer, Hendrik
    Ahnesjö, Jonas
    ten Siethoff, Lasse
    Linneuniversitetet.
    Ragnarsson, Thony
    Tugetam, Åsa
    Bergman, Patrick
    Blood biomarkers in male and female participants after an Ironman-distance triathlon2017In: PLOS ONE, E-ISSN 1932-6203, Vol. 12, no 6, p. 1-9, article id e0179324Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: While overall physical activity is clearly associated with a better short-term and long-term health, prolonged strenuous physical activity may result in a rise in acute levels of blood-biomarkers used in clinical practice for diagnosis of various conditions or diseases. In this study, we explored the acute effects of a full Ironman-distance triathlon on biomarkers related to heart-, liver-, kidney- and skeletal muscle damage immediately post-race and after one week's rest. We also examined if sex, age, finishing time and body composition influenced the post-race values of the biomarkers. METHODS: A sample of 30 subjects was recruited (50% women) to the study. The subjects were evaluated for body composition and blood samples were taken at three occasions, before the race (T1), immediately after (T2) and one week after the race (T3). Linear regression models were fitted to analyse the independent contribution of sex and finishing time controlled for weight, body fat percentage and age, on the biomarkers at the termination of the race (T2). Linear mixed models were fitted to examine if the biomarkers differed between the sexes over time (T1-T3). RESULTS: Being male was a significant predictor of higher post-race (T2) levels of myoglobin, CK, and creatinine levels and body weight was negatively associated with myoglobin. In general, the models were unable to explain the variation of the dependent variables. In the linear mixed models, an interaction between time (T1-T3) and sex was seen for myoglobin and creatinine, in which women had a less pronounced response to the race. CONCLUSION: Overall women appear to tolerate the effects of prolonged strenuous physical activity better than men as illustrated by their lower values of the biomarkers both post-race as well as during recovery.

  • 2.
    Danielsson, Tom
    et al.
    Linnaeus University, Kalmar, Sweden..
    Carlsson, Jörg
    Linnaeus University, Kalmar, Sweden..
    Siethoff, Lasse Ten
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences. Linnaeus University, Kalmar, Sweden..
    Ahnesjö, Jonas
    Linnaeus University, Kalmar, Sweden..
    Bergman, Patrick
    Linnaeus University, Kalmar, Sweden..
    Aerobic capacity predict skeletal but not cardiac muscle damage after triathlon - the Iron(WO)man study.2020In: Scientific Reports, E-ISSN 2045-2322, Vol. 10, no 1, article id 901Article in journal (Refereed)
    Abstract [en]

    This study examines the association between aerobic capacity and biomarkers of skeletal- and cardiac muscle damage among amateur triathletes after a full distance Ironman. Men and women (N = 55) were recruited from local sport clubs. One month before an Ironman triathlon, they conducted a 20 m shuttle run test to determine aerobic capacity. Blood samples were taken immediately after finishing the triathlon, and analyzed for cardiac Troponin T (cTnT), Myosin heavy chain-a (MHC-a), N-terminal prohormone of brain natriuretic peptide (NT-proBNP), Creatin Kinas (CK), and Myoglobin. Regression models examining the association between the biomarkers and aerobic capacity expressed in both relative terms (mLO2*kg-1*min-1) and absolute terms (LO2*min-1) controlled for weight were fitted. A total of 39 subjects (26% females) had complete data and were included in the analysis. No association between aerobic capacity and cardiac muscle damage was observed. For myoglobin, adding aerobic capacity (mLO2*kg-1*min-1) increased the adjusted r2 from 0.026 to 0.210 (F: 8.927, p = 0.005) and for CK the adjusted r2 increased from -0.015 to 0.267 (F: 13.778, p = 0.001). In the models where aerobic capacity was entered in absolute terms the adjusted r2 increased from 0.07 to 0.227 (F: 10.386, p = 0.003) for myoglobin and for CK from -0.029 to 0.281 (F: 15.215, p < 0.001). A negative association between aerobic capacity and skeletal muscle damage was seen but despite the well-known cardio-protective health effect of high aerobic fitness, no such association could be observed in this study.

    Download full text (pdf)
    fulltext
  • 3.
    Derakhti, Mikael
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Bremec, Domen
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics. SuperTrening Sport Performance Centre, Celje, Slovenia.
    Kambič, Tim
    Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia.
    ten Siethoff, Lasse
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Psilander, Niklas
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Four Weeks of Power Optimized Sprint Training Improves Sprint Performance in Adolescent Soccer Players.2022In: International Journal of Sports Physiology and Performance, ISSN 1555-0265, E-ISSN 1555-0273, Vol. 17, no 9, p. 1343-1351Article in journal (Refereed)
    Abstract [en]

    PURPOSE: This study compared the effects of heavy resisted sprint training (RST) versus unresisted sprint training (UST) on sprint performance among adolescent soccer players.

    METHODS: Twenty-four male soccer players (age: 15.7 [0.5] y; body height: 175.7 [9.4] cm; body mass: 62.5 [9.2] kg) were randomly assigned to the RST group (n = 8), the UST group (n = 10), or the control group (n = 6). The UST group performed 8 × 20 m unresisted sprints twice weekly for 4 weeks, whereas the RST group performed 5 × 20-m heavy resisted sprints with a resistance set to maximize the horizontal power output. The control group performed only ordinary soccer training and match play. Magnitude-based decision and linear regression were used to analyze the data.

    RESULTS: The RST group improved sprint performances with moderate to large effect sizes (0.76-1.41) across all distances, both within and between groups (>92% beneficial effect likelihood). Conversely, there were no clear improvements in the UST and control groups. The RST evoked the largest improvements over short distances (6%-8%) and was strongly associated with increased maximum horizontal force capacities (r = .9). Players with a preintervention deficit in force capacity appeared to benefit the most from RST.

    CONCLUSIONS: Four weeks of heavy RST led to superior improvements in short-sprint performance compared with UST among adolescent soccer players. Heavy RST, using a load individually selected to maximize horizontal power, is therefore highly recommended as a method to improve sprint acceleration in youth athletes.

    Download full text (pdf)
    fulltext
  • 4.
    Gerhardt, Karin
    Sveriges Lantbruksuniversitet.
    Skelton, Alasdair (Contributor)
    Stockholms universitet.
    Hamrin, Kerstin (Contributor)
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Lindstam, Jacob (Contributor)
    Swedish School of Sport and Health Sciences, GIH, Department of Movement, Culture and Society.
    ten Siethoff, Lasse (Contributor)
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Schantz, Peter (Contributor)
    Swedish School of Sport and Health Sciences, GIH, Department of Physical Activity and Health.
    Hoy, Sara (Contributor)
    Swedish School of Sport and Health Sciences, GIH, Department of Movement, Culture and Society.
    Al Fakir, Ida (Contributor)
    Swedish School of Sport and Health Sciences, GIH, Department of Movement, Culture and Society.
    Lundquist Wanneberg, Pia (Contributor)
    Swedish School of Sport and Health Sciences, GIH, Department of Movement, Culture and Society.
    Thedin Jakobsson, Britta (Contributor)
    Swedish School of Sport and Health Sciences, GIH, Department of Movement, Culture and Society.
    Buller, Daniel (Contributor)
    Swedish School of Sport and Health Sciences, GIH, Department of Movement, Culture and Society.
    Nordin-Bates, Sanna (Contributor)
    Swedish School of Sport and Health Sciences, GIH, Department of Physical Activity and Health.
    Psilander, Niklas (Contributor)
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Nog nu, politiker – ta klimatkrisen på allvar: 1 944 svenska forskare och anställda i forskarvärlden: Vad är det ni inte förstår?2022In: article id 25 augustiArticle in journal (Other (popular science, discussion, etc.))
  • 5. Korten, Slobodanka
    et al.
    Albet-Torres, Nuria
    Paderi, Francesca
    ten Siethoff, Lasse
    Linneuniversitetet.
    Diez, Stefan
    Korten, Till
    te Kronnie, Geertruy
    Månsson, Alf
    Sample solution constraints on motor-driven diagnostic nanodevices2013In: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 13, no 5, p. 866-876Article in journal (Refereed)
    Abstract [en]

    The last decade has seen appreciable advancements in efforts towards increased portability of lab-on-a-chip devices by substituting microfluidics with molecular motor-based transportation. As of now, first proof-of-principle devices have analyzed protein mixtures of low complexity, such as target protein molecules in buffer solutions optimized for molecular motor performance. However, in a diagnostic workup, lab-on-a-chip devices need to be compatible with complex biological samples. While it has been shown that such samples do not interfere with crucial steps in molecular diagnostics (for example antibody-antigen recognition), their effect on molecular motors is unknown. This critical and long overlooked issue is addressed here. In particular, we studied the effects of blood, cell lysates and solutions containing genomic DNA extracts on actomyosin and kinesin-microtubule-based transport, the two biomolecular motor systems that are most promising for lab-on-a-chip applications. We found that motor function is well preserved at defined dilutions of most of the investigated biological samples and demonstrated a molecular motor-driven label-free blood type test. Our results support the feasibility of molecular-motor driven nanodevices for diagnostic point-of-care applications and also demonstrate important constraints imposed by sample composition and device design that apply both to kinesin-microtubule and actomyosin driven applications.

  • 6. Kumar, Saroj
    et al.
    ten Siethoff, Lasse
    Linneuniversitetet.
    Persson, Malin
    Albet-Torres, Nuria
    Månsson, Alf
    Magnetic capture from blood rescues molecular motor function in diagnostic nanodevices2013In: Journal of Nanobiotechnology, E-ISSN 1477-3155, Vol. 11, article id 14Article in journal (Refereed)
    Abstract [en]

    Background: Introduction of effective point-of-care devices for use in medical diagnostics is part of strategies to combat accelerating health-care costs. Molecular motor driven nanodevices have unique potentials in this regard due to unprecedented level of miniaturization and independence of external pumps. However motor function has been found to be inhibited by body fluids. Results: We report here that a unique procedure, combining separation steps that rely on antibody-antigen interactions, magnetic forces applied to magnetic nanoparticles (MPs) and the specificity of the actomyosin bond, can circumvent the deleterious effects of body fluids (e.g. blood serum). The procedure encompasses the following steps: (i) capture of analyte molecules from serum by MP-antibody conjugates, (ii) pelleting of MP-antibody-analyte complexes, using a magnetic field, followed by exchange of serum for optimized biological buffer, (iii) mixing of MP-antibody-analyte complexes with actin filaments conjugated with same polyclonal antibodies as the magnetic nanoparticles. This causes complex formation: MP-antibody-analyte-antibody-actin, and magnetic separation is used to enrich the complexes. Finally (iv) the complexes are introduced into a nanodevice for specific binding via actin filaments to surface adsorbed molecular motors (heavy meromyosin). The number of actin filaments bound to the motors in the latter step was significantly increased above the control value if protein analyte (50-60 nM) was present in serum (in step i) suggesting appreciable formation and enrichment of the MP-antibody-analyte-antibody-actin complexes. Furthermore, addition of ATP demonstrated maintained heavy meromyosin driven propulsion of actin filaments showing that the serum induced inhibition was alleviated. Detailed analysis of the procedure i-iv, using fluorescence microscopy and spectroscopy identified main targets for future optimization. Conclusion: The results demonstrate a promising approach for capturing analytes from serum for subsequent motor driven separation/detection. Indeed, the observed increase in actin filament number, in itself, signals the presence of analyte at clinically relevant nM concentration without the need for further motor driven concentration. Our analysis suggests that exchange of polyclonal for monoclonal antibodies would be a critical improvement, opening for a first clinically useful molecular motor driven lab-on-a-chip device.

  • 7. Kumar, Saroj
    et al.
    ten Siethoff, Lasse
    Linnéuniversitetet.
    Persson, Malin
    Lard, Mercy
    Kronnie, Geertruy Te
    Linke, Heiner
    Månsson, Alf
    Antibodies Covalently Immobilized on Actin Filaments for Fast Myosin Driven Analyte Transport2012In: PLOS ONE, E-ISSN 1932-6203, Vol. 7, no 10, article id e46298Article in journal (Refereed)
    Abstract [en]

    Biosensors would benefit from further miniaturization, increased detection rate and independence from external pumps and other bulky equipment. Whereas transportation systems built around molecular motors and cytoskeletal filaments hold significant promise in the latter regard, recent proof-of-principle devices based on the microtubule-kinesin motor system have not matched the speed of existing methods. An attractive solution to overcome this limitation would be the use of myosin driven propulsion of actin filaments which offers motility one order of magnitude faster than the kinesin-microtubule system. Here, we realized a necessary requirement for the use of the actomyosin system in biosensing devices, namely covalent attachment of antibodies to actin filaments using heterobifunctional cross-linkers. We also demonstrated consistent and rapid myosin II driven transport where velocity and the fraction of motile actin filaments was negligibly affected by the presence of antibody-antigen complexes at rather high density (&gt;20 mu m(-1)). The results, however, also demonstrated that it was challenging to consistently achieve high density of functional antibodies along the actin filament, and optimization of the covalent coupling procedure to increase labeling density should be a major focus for future work. Despite the remaining challenges, the reported advances are important steps towards considerably faster nanoseparation than shown for previous molecular motor based devices, and enhanced miniaturization because of high bending flexibility of actin filaments.

  • 8. Lard, Mercy
    et al.
    ten Siethoff, Lasse
    Linneuniversitetet.
    Generosi, Johanna
    Månsson, Alf
    Linke, Heiner
    Molecular Motor Transport through Hollow Nanowires2014In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 14, no 6, p. 3041-3046Article in journal (Refereed)
    Abstract [en]

    Biomolecular motors offer self-propelled, directed transport in designed microscale networks and can potentially replace pump-driven nanofluidics. However, in existing systems, transportation is limited to the two-dimensional plane. Here we demonstrate fully one-dimensional (1D) myosin-driven motion of fluorescent probes (actin filaments) through 80 nm wide, Al2O3 hollow nanowires of micrometer length. The motor-driven transport is orders of magnitude faster than would be possible by passive diffusion. The system represents a necessary element for advanced devices based on gliding assays, for example, in lab-on-a-chip systems with channel crossings and in pumpless nanosyringes. It may also serve as a scaffold for bottom-up assembly of muscle proteins into actin ordered contractile units, mimicking the muscle sarcomere.

  • 9. Lard, Mercy
    et al.
    ten Siethoff, Lasse
    Linneuniversitetet.
    Generosi, Johanna
    Persson, Malin
    Linke, Heiner
    Månsson, Alf
    Nanowire-Imposed Geometrical Control in Studies of Actomyosin Motor Function2015In: IEEE Transactions on Nanobioscience, ISSN 1536-1241, E-ISSN 1558-2639, Vol. 14, no 3, p. 289-297Article in journal (Refereed)
    Abstract [en]

    Recently, molecular motor gliding assays with actin and myosin from muscle have been realized on semiconductor nanowires coated with Al2O3. This opens for unique nanotechnological applications and novel fundamental studies of actomyosin motor function. Here, we provide a comparison of myosin-driven actin filament motility on Al2O3 to both nitrocellulose and trimethylchlorosilane derivatized surfaces. We also show that actomyosin motility on the less than 200 nm wide tips of arrays of Al2O3-coated nanowires can be used to control the number, and density, of myosin-actin attachment points. Results obtained using nanowire arrays with different inter-wire spacing are consistent with the idea that the actin filament sliding velocity is determined both by the total number and the average density of attached myosin heads along the actin filament. Further, the results are consistent with buckling of long myosin-free segments of the filaments as a factor underlying reduced velocity. On the other hand, the findings do not support a mechanistic role in decreasing velocity, of increased nearest neighbor distance between available myosin heads. Our results open up for more advanced studies that may use nanowire-based structures for fundamental investigations of molecular motors, including the possibility to create a nanowire-templated bottom-up assembly of 3D, muscle-like structures.

  • 10. Lard, Mercy
    et al.
    ten Siethoff, Lasse
    Linneuniversitetet.
    Kumar, Saroj
    Persson, Malin
    te Kronnie, Geertruy
    Linke, Heiner
    Månsson, Alf
    Ultrafast molecular motor driven nanoseparation and biosensing2013In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 48, p. 145-152Article in journal (Refereed)
    Abstract [en]

    Portable biosensor systems would benefit from reduced dependency on external power supplies as well as from further miniaturization and increased detection rate. Systems built around self-propelled biological molecular motors and cytoskeletal filaments hold significant promise in these regards as they are built from nanoscale components that enable nanoseparation independent of fluidic pumping. Previously reported microtubule-kinesin based devices are slow, however, compared to several existing biosensor systems. Here we demonstrate that this speed limitation can be overcome by using the faster actomyosin motor system. Moreover, due to lower flexural rigidity of the actin filaments, smaller features can be achieved compared to microtubule-based systems, enabling further miniaturization. Using a device designed through optimization by Monte Carlo simulations, we demonstrate extensive myosin driven enrichment of actin filaments on a detector area of less than 10 μm2, with a concentration half-time of approximately 40 s. We also show accumulation of model analyte (streptavidin at nanomolar concentration in nanoliter effective volume) detecting increased fluorescence intensity within seconds after initiation of motor-driven transportation from capture regions. We discuss further optimizations of the system and incorporation into a complete biosensing workflow.

  • 11. Lard, Mercy
    et al.
    ten Siethoff, Lasse
    Linneuniversitetet.
    Månsson, Alf
    Linke, Heiner
    Tracking Actomyosin at Fluorescence Check Points2013In: Scientific Reports, E-ISSN 2045-2322, Vol. 3, article id 1092Article in journal (Refereed)
    Abstract [en]

    Emerging concepts for on-chip biotechnologies aim to replace microfluidic flow by active, molecular-motor driven transport of cytoskeletal filaments, including applications in bio-simulation, biocomputation, diagnostics, and drug screening. Many of these applications require reliable detection, with minimal data acquisition, of filaments at many, local checkpoints in a device consisting of a potentially complex network of channels that guide filament motion. Here we develop such a detection system using actomyosin motility. Detection points consist of pairs of gold lines running perpendicular to nanochannels that guide motion of fluorescent actin filaments. Fluorescence interference contrast (FLIC) is used to locally enhance the signal at the gold lines. A cross-correlation method is used to suppress errors, allowing reliable detection of single or multiple filaments. Optimal device design parameters are discussed. The results open for automatic read-out of filament count and velocity in high-throughput motility assays, helping establish the viability of active, motor-driven on-chip applications.

  • 12. Månsson, Alf
    et al.
    ten Siethoff, Lasse
    Linneuniversitetet.
    Lard, Mercy
    Generosi, Johanna
    Andersson, Håkan S.
    Linke, Heiner
    Three-Dimensionally Constrained Actomyosin Motility on Oxide Coated Semiconductor Nanowires2014In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 106, no 2, p. 453A-453AArticle in journal (Other academic)
  • 13. Persson, Malin
    et al.
    Bengtsson, Elina
    ten Siethoff, Lasse
    Linneuniversitetet.
    Månsson, Alf
    Nonlinear Cross-Bridge Elasticity and Post-Power-Stroke Events in Fast Skeletal Muscle Actomyosin2013In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 105, no 8, p. 1871-1881Article in journal (Refereed)
    Abstract [en]

    Generation-of force and movement by actomyosin cross-bridges is the molecular basis of muscle contraction, but generally accepted ideas about cross-bridge properties have recently been questioned. Of the utmost significance, evidence for nonlinear cross-bridge elasticity has been presented. We here investigate how this and other newly discovered or postulated phenomena would modify cross-bridge operation, with focus on post-power-stroke events. First, as an experimental basis, we present evidence for a hyperbolic [MgATP]-velocity relationship of heavy-meromyosin-propelled actin filaments in the in vitro motility assay using fast rabbit skeletal muscle myosin (28-29 degrees C). As the hyperbolic [MgATP]-velocity relationship was not consistent with interhead cooperativity, we developed a cross-bridge model with independent myosin heads and strain-dependent interstate transition rates. The model, implemented with inclusion of MgATP-independent detachment from the rigor state, as suggested by previous single-molecule mechanics experiments, accounts well for the [MgATP]-velocity relationship if nonlinear cross-bridge elasticity is assumed, but not if linear cross-bridge elasticity is assumed. In addition, a better fit is obtained with load-independent than with load-dependent MgATP-induced detachment rate. We discuss our results in relation to previous data showing a nonhyperbolic [MgATP1-velocity relationship when actin filaments are propelled by myosin subfragment 1 or full-length myosin. We also consider the implications of our results for characterization of the cross-bridge elasticity in the filament lattice of muscle.

  • 14. Persson, Malin
    et al.
    Bengtsson, Elina
    ten Siethoff, Lasse
    Linneuniversitetet.
    Månsson, Alf
    Non-Linear Cross-Bridge Elasticity, ATP-Independent Detachment and ATP-Velocity Relationships for Skeletal Muscle Actomyosin2014In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 106, no 2, p. 158A-158AArticle in journal (Other academic)
  • 15.
    Petré, Henrik
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Ovendal, Alexander
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Westblad, Niklas
    ten Siethoff, Lasse
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Psilander, Niklas
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Physical Characteristics of Elite Male Bandy Players.2022In: International Journal of Environmental Research and Public Health, ISSN 1661-7827, E-ISSN 1660-4601, Vol. 19, no 19, article id 12337Article in journal (Refereed)
    Abstract [en]

    Physical characteristics of elite male bandy players have not been studied for the last 30 years. Therefore, the purpose of this study was to evaluate the physical characteristics of elite male bandy players with respect to playing positions. A cross-sectional study was performed that included 25 male bandy players from one of the highest-ranked bandy leagues in the world. Body weight, length, isometric mid-thigh pull, countermovement jump, squat jump, unilateral long jump, bilateral long jump, 15- and 30-m sprint, 15-m flying sprint, and VO2max were tested. Players were divided into forwards, midfielders, and defenders. Forwards had significantly (p = 0.012) higher relative VO2max than defenders (59.8 ± 4.3 compared to 53.0 ± 5.6 mL/kg/min). No significant differences for any of the other measurements were observed between positions. This is the first study to present the physical characteristics between playing positions in off- and on-ice tests for male bandy players competing at the highest level. Today's bandy players are heavier and have lower relative VO2max compared with players in the early 1990s. However, their work capacities have increased since their absolute VO2max is higher. These results provide benchmark values that can serve as a foundation for strength and conditioning professionals when designing future training programs.

    Download full text (pdf)
    fulltext
  • 16.
    Petré, Henrik
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Ovendal, Alexander
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Westblad, Niklas
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    ten Siethoff, Lasse
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Rosdahl, Hans
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Psilander, Niklas
    Swedish School of Sport and Health Sciences, GIH, Department of Physiology, Nutrition and Biomechanics.
    Effect of the Intrasession Exercise Order of Flywheel Resistance and High-Intensity Interval Training on Maximal Strength and Power Performance in Elite Team-Sport Athletes.2023In: Journal of Strength and Conditioning Research, ISSN 1064-8011, E-ISSN 1533-4287, Vol. 37, no 12, p. 2389-2396Article in journal (Refereed)
    Abstract [en]

    This study aimed to investigate the effect of intrasession exercise order of maximal effort flywheel resistance training (RT; 436 repetitions [rep]) and high-intensity interval training (HIIT, 2–438 rep of 20 second at 130% of Watt atV̇O2max [wV̇O2max]), on the development of maximal strength and power in elite team-sport athletes. A 7-week training intervention involving 2 training sessions per week of either HIIT followed by RT (HIIT + RT, n 5 8), RT followed by HIIT (RT + HIIT, n 5 8), or RTalone (RT, n 5 7) was conducted in 23 elite male bandy players (24.7 6 4.3 years). Power and work were continuously measured during the flywheel RT. Isometric squat strength (ISq), countermovement jump, squat jump, and V̇O2max were measured before and after the training period. Power output during training differed between the groups (p 5 0.013, h2p5 0.365) with RT producing more power than HIIT + RT (p 5 0.005). ISq improved following RT + HIIT (;80%, d 5 2.10, p 5 0.001) and following HIIT + RT(;40%, d 5 1.64, p 5 0.005), and RT alone (;70%, d 5 1.67, p 5 0.004). V̇O2max increased following RT + HIIT and HIIT + RT(;10%, d51.98, p50.001 resp. d52.08, p50.001). HIIT before RT reduced power output during RT in elite team-sport athletes but did not lead to blunted development of maximal strength or power after a 7-week training period. During longer training periods(.7-weeks), it may be advantageous to schedule RT before HIIT because the negative effect of HIIT + RT on training quality increased during the final weeks of training. In addition, the largest training effect on maximal strength was observed following RT +HIIT.

    Download full text (pdf)
    fulltext
  • 17.
    ten Siethoff, Lasse
    et al.
    Linneuniversitetet.
    Lard, Mercy
    Generosi, Johanna
    Andersson, Håkan S.
    Linke, Heiner
    Månsson, Alf
    Molecular Motor Propelled Filaments Reveal Light-Guiding in Nanowire Arrays for Enhanced Biosensing2014In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 14, no 2, p. 737-742Article in journal (Refereed)
    Abstract [en]

    Semiconductor nanowire arrays offer significant potential for biosensing applications with optical read-out due to their high surface area and due to the unique optical properties of one-dimensional materials. A challenge for optical read-out of analyte-binding to the nanowires is the need to efficiently collect and detect light from a three-dimensional volume. Here we show that light from fluorophores attached along Several mu m long vertical Al2O3 coated gallium phosphide nanowires couples into the wires, is guided along them and emitted at the tip. This enables effective collection of light emitted by fluorescent analytes located at different focal planes along the nanowire. We unequivocally demonstrate the light-guiding effect using a novel method whereby the changes in emitted fluorescence intensity are observed when fluorescent cytoskeletal filaments are propelled by molecular motors along the wires. The findings are discussed in relation to nanobiosensor developments, other nanotechnological applications, and fundamental studies of motor function.

1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf