Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ainegren, Mats
    et al.
    Mid Sweden University.
    Jensen, Kurt
    University of Southern Denmark.
    Rosdahl, Hans
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Breathing resistance in automated metabolic systems is high in comparison with the Douglas Bag method and previous recommendations2018In: Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, ISSN 1754-3371, Vol. 232, no 2, p. 122-130Article in journal (Refereed)
    Abstract [en]

    The purpose of this study was to investigate the resistance to breathing in metabolic systems used for the distribution and measurement of pulmonary gas exchange. A mechanical lung simulator was used to standardize selected air flow rates (V·, L/s). The delta pressure (?p, Pa) between the ambient air and the air inside the equipment was measured in the breathing valve?s mouthpiece adapter for four metabolic systems and four types of breathing valves. Resistance for the inspiratory and expiratory sides was calculated as RES?=?(?p/V·)?Pa/L/s. The results for resistance showed significant (p?<?0.05) between-group variance among the tested metabolic systems, breathing valves, and between most of the completed V·. The lowest resistance among the metabolic systems was found for a Douglas Bag system which had approximately half of the resistance compared to the automated metabolic systems. The automated systems were found to have higher resistance even at low V· in comparison with previous findings and recommendations. For the hardware components, the highest resistance was found for the breathing valves, while the lowest resistance was found for the hoses. The results showed that resistance in metabolic systems can be minimized through conscious choices of system design and hardware components.

  • 2.
    Carlsson, Magnus
    et al.
    Dalarna University.
    Nilsson, Johnny
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control. Dalarna University.
    Hellström, John
    Halmstad University.
    Tinmark, Fredrik
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Carlsson, Tomas
    Dalarna University.
    The effect of ball temperature on ball speed and carry distance in golf drives2019In: Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, ISSN 1754-3371, Vol. 233, no 2, p. 186-192Article in journal (Refereed)
    Abstract [en]

    The purpose of this study was to investigate the effect of ball temperature on impact ball speed and carry distance during golf drives in a blind randomized test design. The balls were exposed to a temperature-controlled environment (4?°C, 18?°C, 32?°C, and 46?°C) for 24?h prior to the test and each temperature group consisted of 30 balls. The 120 drives were performed by an elite male golfer (handicap: 0.0) in an indoor driving range. All drives were measured by a Doppler-radar system to determine the club-head speed, launch angle, spin rate, ball speed, and carry distance. Differences between the groups were investigated using a one-way analysis of variance. The results indicated that ball-speed and carry-distance differences occurred within the four groups (p?<?0.001 and p?<?0.01, respectively). The post hoc analyses showed that the ball temperatures of 18?°C and 32?°C had greater ball speeds and carry distances than balls at 4?°C and 46?°C (all p?<?0.05). The intervals for the between-group differences were 0.6?0.7?m?s?1 and 2.9?3.9?m for ball speed and carry distance, respectively. Hence, the results showed that ball temperature influences both the ball speed and the carry distance. Based on the findings in this study, standardization of ball temperature should be factored into governing body regulation tests for golf equipment.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf