Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Halvorsen, Kjartan
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Johnston, Christopher
    Back, Willem
    Stokes, Virgil
    Lanshammar, Håkan
    Tracking the motion of hidden segments using kinematic constraints and Kalman filtering.2008In: Journal of Biomechanical Engineering, ISSN 0148-0731, E-ISSN 1528-8951, Vol. 130, no 1, p. 011012-Article in journal (Refereed)
    Abstract [en]

    Motion capture for biomechanical applications involves in almost all cases sensors or markers that are applied to the skin of the body segments of interest. This paper deals with the problem of estimating the movement of connected skeletal segments from 3D position data of markers attached to the skin. The use of kinematic constraints has been shown previously to reduce the error in estimated segment movement that are due to skin and muscles moving with respect to the underlying segment. A kinematic constraint reduces the number of degrees of freedom between two articulating segments. Moreover, kinematic constraints can help reveal the movement of some segments when the 3D marker data otherwise are insufficient. Important cases include the human ankle complex and the phalangeal segments of the horse, where the movement of small segments is almost completely hidden from external observation by joint capsules and ligaments. This paper discusses the use of an extended Kalman filter for tracking a system of connected segments. The system is modeled using rigid segments connected by simplified joint models. The position and orientation of the mechanism are specified by a set of generalized coordinates corresponding to the mechanism's degrees of motion. The generalized coordinates together with their first time derivatives can be used as the state vector of a state space model governing the kinematics of the mechanism. The data collected are marker trajectories from skin-mounted markers, and the state vector is related to the position of the markers through a nonlinear function. The Jacobian of this function is derived. The practical use of the method is demonstrated on a model of the distal part of the limb of the horse. Monte Carlo simulations of marker data for a two-segment system connected by a joint with three degrees of freedom indicate that the proposed method gives significant improvement over a method, which does not make use of the joint constraint, but the method requires that the model is a good approximation of the true mechanism. Applying the method to data on the movement of the four distal-most segments of the horse's limb shows good between trial consistency and small differences between measured marker positions and marker positions predicted by the model.

  • 2.
    Halvorsen, Kjartan
    et al.
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Söderström, Torsten
    Stokes, Virgil
    Lanshammar, Håkan
    Using an extended kalman filter for rigid body pose estimation.2005In: Journal of Biomechanical Engineering, ISSN 0148-0731, E-ISSN 1528-8951, Vol. 127, no 3, p. 475-83Article in journal (Refereed)
    Abstract [en]

    Rigid body pose is commonly represented as the rigid body transformation from one (often reference) pose to another This is usually computed for each frame of data without any assumptions or restrictions on the temporal change of the pose. The most common algorithm was proposed by Söderkvist and Wedin (1993, "Determining the Movements of the Skeleton Using Well-configured Markers," J. Biomech., 26, pp. 1473-1477), and implies the assumption that measurement errors are isotropic and homogenous. This paper describes an alternative method based on a state space formulation and the application of an extended Kalman filter (EKF). State space models are formulated, which describe the kinematics of the rigid body. The state vector consists of six generalized coordinates (corresponding to the 6 degrees of freedom), and their first time derivatives. The state space models have linear dynamics, while the measurement function is a non-linear relation between the state vector and the observations (marker positions). An analytical expression for the linearized measurement function is derived. Tracking the rigid body motion using an EKF enables the use of a priori information on the measurement noise and type of motion to tune the filter. The EKF is time variant, which allows for a natural way of handling temporarily missing marker data. State updates are based on all the information available at each time step, even when data from fewer than three markers are available. Comparison with the method of Söderkvist and Wedin on simulated data showed a considerable improvement in accuracy with the proposed EKF method when marker data was temporarily missing. The proposed method offers an improvement in accuracy of rigid body pose estimation by incorporating knowledge of the characteristics of the movement and the measurement errors. Analytical expressions for the linearized system equations are provided, which eliminate the need for approximate discrete differentiation and which facilitate a fast implementation.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf