Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Fainstein, Nina
    et al.
    Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
    Tyk, Reuven
    Ariel University, Ariel, Israel.
    Touloumi, Olga
    AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece..
    Lagoudaki, Roza
    AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece..
    Goldberg, Yehuda
    Ariel University, Ariel, Israel.
    Agranyoni, Oryan
    Ariel University, Ariel, Israel.
    Navon-Venezia, Shiri
    Ariel University, Ariel, Israel.
    Katz, Abram
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology.
    Grigoriadis, Nikolaos
    AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece..
    Ben-Hur, Tamir
    Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
    Einstein, Ofira
    Ariel University, Ariel, Israel..
    Exercise intensity-dependent immunomodulatory effects on encephalomyelitis.2019In: Annals of Clinical & Translational Neurology, ISSN 2328-9503, Vol. 6, no 9, p. 1647-1658Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Exercise training (ET) has beneficial effects on multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). However, the intensity-dependent effects of ET on the systemic immune system in EAE remain undefined.

    OBJECTIVE: (1) To compare the systemic immune modulatory effects of moderate versus high-intensity ET protocols in protecting against development of EAE; (2) To investigate whether ET affects autoimmunity selectively, or causes general immunosuppression.

    METHODS: Healthy mice performed moderate or high-intensity treadmill running programs. Proteolipid protein (PLP)-induced transfer EAE was utilized to examine ET effects specifically on the systemic immune system. Lymph node (LN)-T cells from trained versus sedentary donor mice were transferred to naïve recipients and EAE severity was assessed, by clinical assessment and histopathological analysis. LN-T cells derived from donor trained versus sedentary PLP-immunized mice were analyzed in vitro for proliferation assays by flow cytometry analysis and cytokine and chemokine receptor gene expression using real-time PCR. T cell-dependent immune responses of trained versus sedentary mice to the nonautoantigen ovalbumin and susceptibility to Escherichia coli-induced acute peritonitis were examined.

    RESULTS: High-intensity training in healthy donor mice induced significantly greater inhibition than moderate-intensity training on proliferation and generation of encephalitogenic T cells in response to PLP-immunization, and on EAE severity upon their transfer into recipient mice. High-intensity training also inhibited LN-T cell proliferation in response to ovalbumin immunization. E. coli bacterial counts and dissemination were not affected by training.

    INTERPRETATION: High-intensity training induces superior effects in preventing autoimmunity in EAE, but does not alter immune responses to E. coli infection.

  • 2.
    Fischer, Katina Mira
    et al.
    German Sport University, Cologne.
    Willwacher, Steffen
    German Sport University, Cologne.
    Arndt, Anton
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
    Brüggemann, Gert-Peter
    German Sport University, Cologne.
    Calcaneal adduction and eversion are coupled to talus and tibial rotation.2018In: Journal of Anatomy, ISSN 0021-8782, E-ISSN 1469-7580, Vol. 233, no 1, p. 64-72Article in journal (Refereed)
    Abstract [en]

    The purpose of this study was to quantify isolated coupling mechanisms of calcaneal adduction/abduction and calcaneal eversion/inversion to proximal bones in vitro. The in vitro approach is necessary because in vivo both movements appear together, making it impossible to determine the extent of their individual contribution to overall ankle joint coupling. Eight fresh frozen foot-leg specimens were tested. Data describing bone orientation and coupling mechanisms between segments were obtained using bone pin marker triads. The bone movement was described in a global coordinate system to examine the coupling between the calcaneus, talus and tibia. The strength of coupling was determined by means of the slope of a linear least squares fit to an angle-angle plot. The coupling coefficients in the present study indicate that not only calcaneal eversion/inversion (coupling coefficient: 0.68 ± 0.15) but to an even greater extent calcaneal adduction/abduction (coupling coefficient: 0.99 ± 0.10) was transferred into talus and tibial rotation, highlighting the relevance of calcaneal adduction for the overall ankle joint coupling. The results of this study present the possibility that controlling calcaneal adduction/abduction can affect talus and tibial rotation and therefore the possible genesis of overuse knee injuries.

  • 3.
    Ovendal, Alexander
    Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences.
    Akuta effekter av myofeedback vid en maximal isokinetisk knäextension  :  - Hur påverkas knämuskulaturens aktiveringsgrad och styrkeutveckling av EMG-feedback?2011Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Abstract

    Aim

    The aim of this study was to investigate whether or not EMG-feedback from quadriceps and hamstrings has any acute effects on muscle activation and strength during a voluntary maximal isokinetic knee extensor action (eccentric and concentric) (20o.s-1).

     

    Method

    Nineteen healthy subjects, 9 female and 10 male, participated in the study. They reported no previous knee injuries and were not involved in strength training for the leg muscles. Subjects performed two sets of maximal voluntary unilateral knee extensor actions at a velocity of 20o.s-1 through a 60o range of motion of the knee joint 120o to 180o, with 180o representing a fully extended knee. EMG-feedback from the knee muscles was only given for the right leg during the second set. Knee extensor strength, level of activation and electromyographic activity of quadriceps and hamstrings were recorded during the whole range of motion (60o).

     

    Results

    The results of this study showed that the knee extensor strength increased significantly (by 10 %) from 144 ± 48 with no feedback to 158 ± 53 Nm with feedback. With regard to the level of activation of the knee extensors it increased significantly (by 9%) from 75 ±15 % with no feedback to 81 ± 15 % with feedback. However, biofeedback did not contribute to decreased levels of hamstrings activity.

     

    Conclusions

    The main findings of the study were that the EMG-rms feedback acutely increased the strength and voluntary activation of quadriceps during a maximal voluntary isokinetic knee extensor action. However, the study showed no reduction in hamstring activation when feedback was given during the knee extensor actions. Therefore, the increased strength output was likely related to the enhanced activation of quadriceps and not a result of decreased hamstrings activation.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf