Generation-of force and movement by actomyosin cross-bridges is the molecular basis of muscle contraction, but generally accepted ideas about cross-bridge properties have recently been questioned. Of the utmost significance, evidence for nonlinear cross-bridge elasticity has been presented. We here investigate how this and other newly discovered or postulated phenomena would modify cross-bridge operation, with focus on post-power-stroke events. First, as an experimental basis, we present evidence for a hyperbolic [MgATP]-velocity relationship of heavy-meromyosin-propelled actin filaments in the in vitro motility assay using fast rabbit skeletal muscle myosin (28-29 degrees C). As the hyperbolic [MgATP]-velocity relationship was not consistent with interhead cooperativity, we developed a cross-bridge model with independent myosin heads and strain-dependent interstate transition rates. The model, implemented with inclusion of MgATP-independent detachment from the rigor state, as suggested by previous single-molecule mechanics experiments, accounts well for the [MgATP]-velocity relationship if nonlinear cross-bridge elasticity is assumed, but not if linear cross-bridge elasticity is assumed. In addition, a better fit is obtained with load-independent than with load-dependent MgATP-induced detachment rate. We discuss our results in relation to previous data showing a nonhyperbolic [MgATP1-velocity relationship when actin filaments are propelled by myosin subfragment 1 or full-length myosin. We also consider the implications of our results for characterization of the cross-bridge elasticity in the filament lattice of muscle.
Aim
The aim of the study was to investigate whether prolonged sustained sub maximal activation of Transversu Abdominis (TrA) influences its anticipitatory activation associated with fast voluntary shoulder flexion.
Method
In a standing position nine physically active female subjects (mean age of 26 ± 3 y) performed five rapid bilateral shoulder flexion from 0° to 90° shoulder flexion, before and after approximately 10 minutes of sustained submaximal activity in TrA as well as after 5 minutes rest. Electromyographic activity (EMG) was recorded using two intramuscular fine-wire electrodes placed in the right TrA and two surface electrodes placed over the Deltoideus anterior. Intra-abdominal pressure (IAP) was recorded intra-gastrically.
Results
TrA was activated prior to Deltoideus, before as well as after the sustained activation. The onset of TrA muscle activation relative to the onset of Deltoideus activation was not significantly different between before, directly after, or 5 minutes after the end of the sustained activity. The root mean square of the TrA EMG was unchanged both before arm lifts (baseline) and within the anticipatory window (100 ms before until 50 ms after Deltoideus onset). The IAP-value was unaffected in the baseline as well as in the anticipatory phase.
Conclusion
This study shows that the central nervous system begins activating the TrA slightly before initiating arm movements and that this behaviour is unaffected by a 10 min. sustained submaximal activation of TrA. There are no methods available for direct measurement of the mechanical output from TrA activation, but since IAP was unaffected it appears reasonable to conclude that the contractility of TrA is not deteriorated by the submaximal activation of TrA.