Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of electrical stimulation on eccentric and concentric torque-velocity relationships during knee extension in man
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences.
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
1990 (English)In: Acta Physiologica Scandinavica, ISSN 0001-6772, E-ISSN 1365-201X, Vol. 140, 17-22 p.Article in journal (Refereed) Published
Abstract [en]

The purpose of this study was to examine the effects of electrical stimulation on torque output during knee extension. Nine well-trained males (19-43 years) performed maximal voluntary, electrically evoked and superimposed eccentric and concentric knee extensions at velocities of 60, 180 and 360 degrees s-1, plus an isometric test (torque was always recorded at a 60 degree knee angle). Fifty-hertz stimulation was applied percutaneously at the maximum tolerated voltage (140-200 V). By superimposing electrical stimulation, eccentric torque could be increased by an average of 21-24% above the voluntary level (P less than 0.05). No corresponding differences were observed between superimposed and voluntary torques under isometric or concentric conditions. Electrically evoked torque also exceeded voluntary torque under eccentric conditions (11-12%, P less than 0.05), but was less under isometric and concentric conditions (-10 to -52%, P less than 0.05). Within the limitations of the study, it was concluded that eccentric knee extension torque under maximal voluntary conditions does not represent the maximal torque-producing capacity. The action of a neural inhibitory mechanism was proposed as an explanation for this finding. If active, this mechanism may protect against the extreme muscle tension that could otherwise develop under truly maximal eccentric conditions.

Place, publisher, year, edition, pages
1990. Vol. 140, 17-22 p.
National Category
Physiology
Identifiers
URN: urn:nbn:se:gih:diva-410OAI: oai:DiVA.org:gih-410DiVA: diva2:776
Available from: 2008-06-04 Created: 2008-06-04 Last updated: 2011-05-03Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Seger, JanThorstensson, Alf
By organisation
Department of Sport and Health SciencesLaboratory for Biomechanics and Motor Control
In the same journal
Acta Physiologica Scandinavica
Physiology

Search outside of DiVA

GoogleGoogle Scholar

Total: 154 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf