Open this publication in new window or tab >>Show others...
2016 (English)In: Scandinavian Journal of Medicine and Science in Sports, ISSN 0905-7188, E-ISSN 1600-0838, Vol. 26, no 7, p. 764-773Article in journal (Refereed) Published
Abstract [en]
The primary aim of this study was to investigate the effect of short-term resistance training (RET) on mitochondrial protein content and glucose tolerance in elderly. Elderly women and men (age 71 ± 1, mean ± SEM) were assigned to a group performing 8 weeks of resistance training (RET, n = 12) or no training (CON, n = 9). The RET group increased in (i) knee extensor strength (concentric +11 ± 3%, eccentric +8 ± 3% and static +12 ± 3%), (ii) initial (0-30 ms) rate of force development (+52 ± 26%) and (iii) contents of proteins related to signaling of muscle protein synthesis (Akt +69 ± 20 and mammalian target of rapamycin +69 ± 32%). Muscle fiber type composition changed to a more oxidative profile in RET with increased amount of type IIa fibers (+26.9 ± 6.8%) and a trend for decreased amount of type IIx fibers (-16.4 ± 18.2%, P = 0.068). Mitochondrial proteins (OXPHOS complex II, IV, and citrate synthase) increased in RET by +30 ± 11%, +99 ± 31% and +29 ± 8%, respectively. RET resulted in improved oral glucose tolerance measured as reduced area under curve for glucose (-21 ± 26%) and reduced plasma glucose 2 h post-glucose intake (-14 ± 5%). In CON parameters were unchanged or impaired. In conclusion, short-term resistance training in elderly not only improves muscular strength, but results in robust increases in several parameters related to muscle aerobic capacity.
National Category
Sport and Fitness Sciences
Research subject
Medicine/Technology
Identifiers
urn:nbn:se:gih:diva-3501 (URN)10.1111/sms.12537 (DOI)000379758500006 ()26271931 (PubMedID)
Note
At the time of Per Frank's dissertation this article was accepted.
2014-10-162014-10-162018-03-19Bibliographically approved