This study is aimed to examine the muscle fiber type, composition and satellite cells in young male soccer players and to correlate them to cardiorespiratory indices and muscle strength. The participants formed three Groups: Group A (n = 13), 11.2 ± 0.4yrs, Group B (n=10), 13.1 ± 0.5yrs and Group C (n = 9), 15.2 ± 0.6yrs. Muscle biopsies were obtained from the vastus lateralis. Peak torque values of the quadriceps and hamstrings were recorded and VO2max was measured on the treadmill. Group C had lower type I percentage distribution compared to A by 21.3% (p < 0.01), while the type IIA relative percentage was higher by 18.1% and 18.4% than in Groups A and B (p < 0.05). Groups B and C had higher cross-sectional area (CSA) values in all fiber types than in Group A (0.05 < p < 0.001). The number of satellite cells did not differ between the groups. Groups B and C had higher peak torque at all angular velocities and absolute VO2max in terms of ml·min(-1) than Group A (0.05 < p < 0.001). It is concluded that the increased percentage of type IIA muscle fibers noticed in Group C in comparison to the Groups A and B should be mainly attributed to the different workload exercise and training programs. The alteration of myosin heavy chain (MHC) isoforms composition even in children is an important mechanism for skeletal muscle characteristics. Finally, CSA, isokinetic muscle strength and VO2max values seems to be expressed according to age. Key PointsFifteen years old soccer players have higher IIA percentage distribution than the younger players by approximately 18%.The age and the training status play a crucial role in muscle fibers co-expression.Specific training in young athletes seems to alter significantly the muscular metabolic profile.