Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Moxus Modular metabolic sustem evaluated with two sensors for ventilation against the Douglas bag method
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.ORCID iD: 0000-0001-8161-5610
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, The Laboratory of Applied Sports Science (LTIV).
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.ORCID iD: 0000-0002-3612-449X
2013 (English)In: European Journal of Applied Physiology, ISSN 1439-6319, E-ISSN 1439-6327, Vol. 113, no 5, 1353-1367 p.Article in journal (Refereed) Published
Abstract [en]

This study evaluated the Moxus metabolic system with the Douglas bag method (DBM) as criterion. Reliability and validity were investigated in a wide range of ventilation and oxygen uptake and two sensors for determining ventilation were included. Thirteen well-trained athletes participated in one pre-test and four tests for data collection, exercising on a cycle ergometer at five submaximal powers (50-263 W) and at [Formula: see text]. Gas exchange variables were measured simultaneously using a serial setup with data collected on different days in an order randomized between Moxus with pneumotachometer (MP) and turbine flowmeter (MT) sensors for ventilation. Reliability with both sensors was comparable to the DBM. Average CV (%) of all exercise intensities were with MP: 3.0 ± 1.3 for VO(2), 3.8 ± 1.5 for VCO(2), 3.1 ± 1.2 for the respiratory exchange ratio (RER) and 4.2 ± 0.8 for V (E). The corresponding values with MT were: 2.7 ± 0.3 for VO(2), 4.7 ± 0.4 for VCO(2), 3.3 ± 0.9 for RER and 4.8 ± 1.4 for V (E). Validity was acceptable except for small differences related to the determination of ventilation. The relative differences in relation to DBM at the powers including [Formula: see text] were similar for both sensors with the ranges being: +4 to -2 % for V (E), +5 to -3 % for VO(2) and +5 to -4 % for VCO(2) while RER did not differ at any power. The Moxus metabolic system shows high and adequate reliability and reasonable validity over a wide measurement range. At a few exercise levels, V (E) differed slightly from DBM, resulting in concomitant changes in VO(2) and VCO(2).

Place, publisher, year, edition, pages
2013. Vol. 113, no 5, 1353-1367 p.
National Category
Biological Sciences
Research subject
Medicine/Technology
Identifiers
URN: urn:nbn:se:gih:diva-2605DOI: 10.1007/s00421-012-2551-1PubMedID: 23224357OAI: oai:DiVA.org:gih-2605DiVA: diva2:582346
Available from: 2013-01-04 Created: 2013-01-04 Last updated: 2017-03-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Rosdahl, HansLindberg, ThomasNilsson, Johnny

Search in DiVA

By author/editor
Rosdahl, HansLindberg, ThomasNilsson, Johnny
By organisation
Laboratory for Biomechanics and Motor ControlThe Laboratory of Applied Sports Science (LTIV)
In the same journal
European Journal of Applied Physiology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 173 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf