This study incorporated variations in speed and the horizontal resistance acting upon elite female skiers during double poling (DP) on a treadmill and specifically analyzed biomechanical adaptations to these variations. Whole body kinematics and pole force data were recorded and used to calculate the moment of force acting on the shoulder and elbow joints. Data were obtained with a 3D optoelectronic system using reflective markers at given anatomical landmarks. Forces along the long axis of the right pole were measured with a piezoelectric force transducer. Surface electrodes were used to record EMG activity in the rectus femoris, rectus abdominis, latissimus dorsi and triceps brachii muscles. In a first set of recordings, the participants double poled with zero elevation at five different speeds from 8 to 17 km h−1. In a second set of recordings, horizontal resistance was added by weights (0.4–1.9 kg) attached to a pulley system pulling the skier posteriorly during DP at 14 km h−1. Results showed increasing relative duration of the thrust phase with increasing resistance, but not with speed. Significant kinematic differences occurred with increase in both speed and resistance. The mean (±SD) horizontal force components ranged between 1.7 (±1.3) and 2.8 (±1.1) percent (%) bodyweight (BW) in the speed adaptation and 3.1 (±0.6) and 4.0 (±1.3) % BW in the adaptation to horizontal resistance. Peak muscle activity showed a central to peripheral (proximo-distal) activation sequence. The temporal cycle phase pattern in the adaptation to speed and horizontal resistance differed.