Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Intake of branched-chain amino acids influences the levels of MAFbx mRNA and MuRF-1 total protein in resting and exercising human muscle.
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Eva Blomstrand's research group.ORCID iD: 0000-0003-3747-0148
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Eva Blomstrand's research group.ORCID iD: 0000-0003-1942-2919
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Eva Blomstrand's research group.ORCID iD: 0000-0002-6537-042X
2012 (English)In: American Journal of Physiology. Endocrinology and Metabolism, ISSN 0193-1849, E-ISSN 1522-1555, Vol. 302, no 5, E510-21 p.Article in journal (Refereed) Published
Abstract [en]

Resistance exercise and amino acids are two major factors that influence muscle protein turnover. Here, we examined the effects of resistance exercise and branched-chain amino acids (BCAA), individually and in combination, on the expression of anabolic and catabolic genes in human skeletal muscle. Seven subjects performed two sessions of unilateral leg press exercise with randomized supplementation with BCAA or flavored water. Biopsies were collected from the vastus lateralis muscle of both the resting and exercising legs before and repeatedly after exercise to determine levels of mRNA, protein phosphorylation, and amino acid concentrations. Intake of BCAA reduced (P < 0.05) MAFbx mRNA by 30 and 50% in the resting and exercising legs, respectively. The level of MuRF-1 mRNA was elevated (P < 0.05) in the exercising leg two- and threefold under the placebo and BCAA conditions, respectively, whereas MuRF-1 total protein increased by 20% (P < 0.05) only in the placebo condition. Phosphorylation of p70(S6k) increased to a larger extent (∼2-fold; P < 0.05) in the early recovery period with BCAA supplementation, whereas the expression of genes regulating mTOR activity was not influenced by BCAA. Muscle levels of phenylalanine and tyrosine were reduced (13-17%) throughout recovery (P < 0.05) in the placebo condition and to a greater extent (32-43%; P < 0.05) following BCAA supplementation in both resting and exercising muscle. In conclusion, BCAA ingestion reduced MAFbx mRNA and prevented the exercise-induced increase in MuRF-1 total protein in both resting and exercising leg. Further-more, resistance exercise differently influenced MAFbx and MuRF-1 mRNA expression, suggesting both common and divergent regulation of these two ubiquitin ligases.

Place, publisher, year, edition, pages
2012. Vol. 302, no 5, E510-21 p.
National Category
Medical and Health Sciences
Research subject
Medicine/Technology
Identifiers
URN: urn:nbn:se:gih:diva-2439DOI: 10.1152/ajpendo.00353.2011PubMedID: 22127230OAI: oai:DiVA.org:gih-2439DiVA: diva2:561973
Available from: 2012-10-22 Created: 2012-10-22 Last updated: 2016-06-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Borgenvik, MarcusApró, WilliamBlomstrand, Eva

Search in DiVA

By author/editor
Borgenvik, MarcusApró, WilliamBlomstrand, Eva
By organisation
Eva Blomstrand's research group
In the same journal
American Journal of Physiology. Endocrinology and Metabolism
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 318 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf