Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exercise training induces similar elevations in the activity of oxoglutarate dehydrogenase and peak oxygen uptake in the human quadriceps muscle.
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Eva Blomstrand's research group.ORCID iD: 0000-0002-6537-042X
Show others and affiliations
2011 (English)In: Pflügers Archiv: European Journal of Physiology, ISSN 0031-6768, E-ISSN 1432-2013, Vol. 462, no 2, 257-65 p.Article in journal (Refereed) Published
Abstract [en]

During exercise involving a small muscle mass, peak oxygen uptake is thought to be limited by peripheral factors, such as the degree of oxygen extraction from the blood and/or mitochondrial oxidative capacity. Previously, the maximal activity of the Krebs cycle enzyme oxoglutarate dehydrogenase has been shown to provide a quantitative measure of maximal oxidative metabolism, but it is not known whether the increase in this activity after a period of training reflects the elevation in peak oxygen consumption. Fourteen subjects performed one-legged knee extension exercise for 5-7 weeks, while the other leg remained untrained. Thereafter, the peak oxygen uptake by the quadriceps muscle was determined for both legs, and muscle biopsies were taken for assays of maximal enzyme activities (at 25°C). The peak oxygen uptake was 26% higher in the trained than in the untrained muscle (395 vs. 315 ml min(-1) kg(-1), respectively; P<0.01). The maximal activities of the Krebs cycle enzymes in the trained and untrained muscle were as follows: citrate synthase, 22.4 vs. 18.2 μmol min(-1) g(-1) (23%, P<0.05); oxoglutarate dehydrogenase, 1.88 vs. 1.54 μmol min(-1) g(-1) (22%, P<0.05); and succinate dehydrogenase, 3.88 vs. 3.28 μmol min(-1) g(-1) (18%, P<0.05). The difference between the trained and untrained muscles with respect to peak oxygen uptake (80 ml min(-1) kg(-1)) corresponded to a flux through the Krebs cycle of 1.05 μmol min(-1) g(-1), and the corresponding difference in oxoglutarate dehydrogenase activity (at 38°C) was 0.83 μmol min(-1) g(-1). These parallel increases suggest that there is no excess mitochondrial capacity during maximal exercise with a small muscle mass.

Place, publisher, year, edition, pages
2011. Vol. 462, no 2, 257-65 p.
National Category
Medical and Health Sciences
Research subject
Medicine/Technology
Identifiers
URN: urn:nbn:se:gih:diva-1918DOI: 10.1007/s00424-011-0978-6PubMedID: 21611730OAI: oai:DiVA.org:gih-1918DiVA: diva2:448185
Available from: 2011-10-14 Created: 2011-10-14 Last updated: 2016-06-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Blomstrand, Eva

Search in DiVA

By author/editor
Blomstrand, Eva
By organisation
Eva Blomstrand's research group
In the same journal
Pflügers Archiv: European Journal of Physiology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 88 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf