Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deep and superficial abdominal muscle activation during trunk stabilization exercises with and without instruction to hollow.
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.ORCID iD: 0000-0002-7879-9188
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
2010 (English)In: Manual Therapy, ISSN 1356-689X, E-ISSN 1532-2769, Vol. 15, no 5, 502-7 p.Article in journal (Refereed) Published
Abstract [en]

The deepest muscle of the human ventro-lateral abdominal wall, the Transversus Abdominis (TrA), has been ascribed a specific role in spine stabilization, which has motivated special core stability exercises and hollowing instruction to specifically involve this muscle. The purpose here was to evaluate the levels of activation of the TrA and the superficial Rectus Abdominis (RA) muscles during five common stabilization exercises performed in supine, bridging and four-point kneeling positions, with and without instruction to hollow, i.e. to continuously pull the lower part of the abdomen towards the spine. Nine habitually active women participated and muscle activity was recorded bilaterally from TrA and RA with intramuscular fine-wire electrodes introduced under the guidance of ultrasound. Results showed that subjects were able to selectively increase the activation of the TrA, isolated from the RA, with the specific instruction to hollow and that side differences in the amplitude of TrA activity, related to the asymmetry of the exercises, remained even after the instruction to hollow. The exercises investigated caused levels of TrA activation from 4 to 43% of that during maximal effort and can thus be used clinically to grade the load on the TrA when designing programs aiming at training that muscle.

Place, publisher, year, edition, pages
2010. Vol. 15, no 5, 502-7 p.
National Category
Physiology
Research subject
Medicine/Technology
Identifiers
URN: urn:nbn:se:gih:diva-1237DOI: 10.1016/j.math.2010.05.006PubMedID: 20570549OAI: oai:DiVA.org:gih-1237DiVA: diva2:327353
Available from: 2010-06-29 Created: 2010-06-29 Last updated: 2016-04-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Bjerkefors, AnnaNordlund Ekblom, Maria MThorstensson, Alf
By organisation
Laboratory for Biomechanics and Motor Control
In the same journal
Manual Therapy
Physiology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 209 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf