Six male subjects performed intensive cycle exercise to exhaustion after cooling their legs in water at 10-12 degrees C (muscle temperature (Tm) 28 +/- 2.6 degrees C, mean +/- SD). Exercise at exactly the same rate and duration (370 +/- 34 W, 1.5 +/- 0.2 min) was then repeated by each subject 2-5 weeks later at normal Tm (35 +/- 1.0 degrees C). Muscle biopsies were taken from the vastus lateralis muscle at rest and after exercise. The muscle tissue was freeze-dried and fragments of single fibres were dissected out. The fibres were classified and pooled into groups of type I and type II. Analyses of glycogen, glucose 6-phosphate, lactate and phosphagens were performed on pools of type-identified fibres. After exercise at reduced Tm, all subjects had higher concentrations of glucose 6-phosphate and lactate in both type I and type II fibres, and in most subjects the concentrations of ATP and phosphocreatine were lower as compared with the findings after exercise at normal Tm. During exercise the glycogen content of both fibre types decreased to a greater extent at reduced than at normal Tm in most subjects. The results suggest that during intensive dynamic exercise at reduced Tm there is a higher degree of glycolysis from glycogen in the muscle than in the normal situation. In some subjects the cause of fatigue may be related to a more rapid accumulation of lactate in the cold muscle, while in others fatigue may be related to alternative factors, e.g. low levels of ATP and phosphocreatine.