Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Different strategies to compensate for the effects of fatigue revealed by neuromuscular adaptation processes in humans.
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
1994 (English)In: Neuroscience Letters, ISSN 0304-3940, E-ISSN 1872-7972, Vol. 166, no 1, 101-5 p.Article in journal (Refereed) Published
Abstract [en]

An initially submaximal hopping task was maintained with the same global power output until it became the maximal performance; since there was no decrease in performance, any change in behavior occurring with fatigue characterizes the strategies allowing to compensate for the effects of fatigue. In a prolonged hopping task, fatigue is likely to be most prominent in the ankle extensor muscles since they are the main contributors to vertical propulsion in the hop. With fatigue, all subjects landed with more flexed knees and with an increased activity in the biarticular rectus femoris muscle indicating some compensation between the knee and ankle joint. Furthermore, two different strategies appeared to further compensate for the important fatigue of the ankle extensor muscles: one was organized across joints and consisted in a heavier reliance of the knee extensor vastus lateralis, and the other was organized within the fatigued joint and consisted in an earlier preactivation of the gastrocnemius. As a consequence, two different adaptations of the ground reaction force profiles appeared at the end of the session; each being related to one of these two strategies.

Place, publisher, year, edition, pages
1994. Vol. 166, no 1, 101-5 p.
Identifiers
URN: urn:nbn:se:gih:diva-757PubMedID: 8190349OAI: oai:DiVA.org:gih-757DiVA: diva2:174540
Available from: 2009-02-23 Created: 2009-02-16 Last updated: 2011-05-04Bibliographically approved

Open Access in DiVA

No full text

PubMed

Search in DiVA

By author/editor
Thorstensson, Alf
By organisation
Laboratory for Biomechanics and Motor Control
In the same journal
Neuroscience Letters

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 59 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf