Gymnastik- och idrottshögskolan, GIH

Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of gastrocnemius muscle length on triceps surae torque development and electromyographic activity in man.
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
1995 (English)In: Experimental Brain Research, ISSN 0014-4819, E-ISSN 1432-1106, Vol. 105, no 2, p. 283-90Article in journal (Refereed) Published
Abstract [en]

The present study was designed to determine the relative contribution of the gastrocnemius muscle to isometric plantar flexor torque production at varying knee angles, while investigating the activation of the gastrocnemius muscle at standardised non-optimal lengths. Voluntary plantar flexor torque, supramaximally stimulated twitch torque and myoelectric activity (EMG) from the triceps surae were measured at different knee angles. Surface and intra-muscular EMG were recorded from the soleus muscle and the medial and lateral heads of the gastrocnemius muscle in 10 male subjects. With the ankle angle held constant, knee angle was changed in steps of 30 degrees ranging from 180 degrees (extended) to 60 degrees (extreme flexion), while voluntary torque from a 5-s contraction was determined at 10 different levels of voluntary effort, ranging from 10% of maximal effort to maximal effort. To assess effort, supramaximal twitches were superimposed on all voluntary contractions, and additionally during rest. Maximal plantar flexor torque and resting twitch torque decreased significantly in a sigmoidal fashion with increasing knee flexion to 60% of the maximum torque at 180 degrees knee angle. For similar levels of voluntary effort, the EMG root mean square (RMS) of gastrocnemius was less with increased knee flexion, whereas soleus RMS remained unchanged. From these data, it is concluded that the contribution of gastrocnemius to plantar flexor torque is at least 40% of the total torque in the straight leg position. The decrease of gastrocnemius EMG RMS with decreasing muscle length may be brought about by a decrease in the number of fibres within the EMG electrode recording volume and/or impaired neuromuscular transmission.

Place, publisher, year, edition, pages
1995. Vol. 105, no 2, p. 283-90
Identifiers
URN: urn:nbn:se:gih:diva-754PubMedID: 7498381OAI: oai:DiVA.org:gih-754DiVA, id: diva2:174537
Available from: 2009-02-23 Created: 2009-02-16 Last updated: 2017-12-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

PubMed

Authority records

Thorstensson, Alf

Search in DiVA

By author/editor
Thorstensson, Alf
By organisation
Laboratory for Biomechanics and Motor Control
In the same journal
Experimental Brain Research

Search outside of DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetric score

pubmed
urn-nbn
Total: 358 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf