Gymnastik- och idrottshögskolan, GIH

Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Trunk movements in human locomotion.
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Laboratory for Biomechanics and Motor Control.
1984 (English)In: Acta Physiologica Scandinavica, ISSN 0001-6772, E-ISSN 1365-201X, Vol. 121, no 1, p. 9-22Article in journal (Refereed) Published
Abstract [en]

Trunk movements in the frontal and sagittal planes were studied in 10 healthy males (18-35 yrs) during normal walking (1.0-2.5 m/s) and running (2.0-6.0 m/s) on a treadmill. Movements were recorded with a Selspot optoelectronic system. Directions, amplitudes and phase relationships to the stride cycle (defined by the leg movements) were analyzed for both linear and angular displacements. During one stride cycle the trunk displayed two oscillations in the vertical (mean net amplitude 2.5-9.5 cm) and horizontal, forward-backward directions (mean net amplitude 0.5-3 cm) and one oscillation in the lateral, side to side direction (mean net amplitude 2-6 cm). The magnitude and timing of the various oscillations varied in a different way with speed and mode of progression. Differences in amplitudes and timing of the movements at separate levels along the spine gave rise to angular oscillations with a similar periodicity as the linear displacements in both planes studied. The net angular trunk tilting in the frontal plane increased with speed from 3-10 degrees. The net forward-backward trunk inclination showed a small increase with speed up to 5 degrees in fast running. The mean forward inclination of the trunk increased from 6 degrees to about 13 degrees with speed. Peak inclination to one side occurred during the support phase of the leg on the same side. Peak forward inclination was reached at the initiation of the support phase in walking, whereas in running the peak inclination was in the opposite direction at this point. The adaptations of trunk movements to speed and mode of progression could be related to changing mechanical conditions and different demands on equilibrium control due to e.g. changes in support phase duration and leg movements.

Place, publisher, year, edition, pages
1984. Vol. 121, no 1, p. 9-22
Identifiers
URN: urn:nbn:se:gih:diva-596PubMedID: 6741583OAI: oai:DiVA.org:gih-596DiVA, id: diva2:173754
Available from: 2009-02-17 Created: 2009-02-16 Last updated: 2017-12-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

PubMed

Authority records

Thorstensson, Alf

Search in DiVA

By author/editor
Thorstensson, Alf
By organisation
Laboratory for Biomechanics and Motor Control
In the same journal
Acta Physiologica Scandinavica

Search outside of DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetric score

pubmed
urn-nbn
Total: 216 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf