Gymnastik- och idrottshögskolan, GIH

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Molecular Motor Transport through Hollow Nanowires
Linneuniversitetet.ORCID iD: 0000-0001-6878-3142
Show others and affiliations
2014 (English)In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 14, no 6, p. 3041-3046Article in journal (Refereed) Published
Abstract [en]

Biomolecular motors offer self-propelled, directed transport in designed microscale networks and can potentially replace pump-driven nanofluidics. However, in existing systems, transportation is limited to the two-dimensional plane. Here we demonstrate fully one-dimensional (1D) myosin-driven motion of fluorescent probes (actin filaments) through 80 nm wide, Al2O3 hollow nanowires of micrometer length. The motor-driven transport is orders of magnitude faster than would be possible by passive diffusion. The system represents a necessary element for advanced devices based on gliding assays, for example, in lab-on-a-chip systems with channel crossings and in pumpless nanosyringes. It may also serve as a scaffold for bottom-up assembly of muscle proteins into actin ordered contractile units, mimicking the muscle sarcomere.

Place, publisher, year, edition, pages
2014. Vol. 14, no 6, p. 3041-3046
Keywords [en]
Hollow nanowires, actin, myosin, molecular motors, motor proteins, 1D gliding assay, Materials Chemistry, Materialkemi
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:gih:diva-6444DOI: 10.1021/nl404714bOAI: oai:DiVA.org:gih-6444DiVA, id: diva2:1509841
Available from: 2020-12-14 Created: 2020-12-14 Last updated: 2020-12-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttp://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-36091

Authority records

ten Siethoff, Lasse

Search in DiVA

By author/editor
ten Siethoff, Lasse
In the same journal
Nano letters (Print)
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf