Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of Hyperoxic-Supplemented High-Intensity Interval Training on Hemotological and Muscle Mitochondrial Adaptations in Trained Cyclists.
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.ORCID iD: 0000-0002-8607-550X
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.ORCID iD: 0000-0002-1343-8656​
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences.
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences.
Show others and affiliations
2019 (English)In: Frontiers in Physiology, ISSN 1664-042X, E-ISSN 1664-042X, Vol. 10, article id 730Article in journal (Refereed) Published
Abstract [en]

Background: Hyperoxia (HYPER) increases O2 carrying capacity resulting in a higher O2 delivery to the working muscles during exercise. Several lines of evidence indicate that lactate metabolism, power output, and endurance are improved by HYPER compared to normoxia (NORM). Since HYPER enables a higher exercise power output compared to NORM and considering the O2 delivery limitation at exercise intensities near to maximum, we hypothesized that hyperoxic-supplemented high-intensity interval training (HIIT) would upregulate muscle mitochondrial oxidative capacity and enhance endurance cycling performance compared to training in normoxia. Methods: 23 trained cyclists, age 35.3 ± 6.4 years, body mass 75.2 ± 9.6 kg, height 179.8 ± 7.9 m, and VO2max 4.5 ± 0.7 L min-1 performed 6 weeks polarized and periodized endurance training on a cycle ergometer consisting of supervised HIIT sessions 3 days/week and additional low-intensity training 2 days/week. Participants were randomly assigned to either HYPER (FIO2 0.30; n = 12) or NORM (FIO2 0.21; n = 11) breathing condition during HIIT. Mitochondrial respiration in permeabilized fibers and isolated mitochondria together with maximal and submaximal VO2, hematological parameters, and self-paced endurance cycling performance were tested pre- and posttraining intervention. Results: Hyperoxic training led to a small, non-significant change in performance compared to normoxic training (HYPER 6.0 ± 3.7%, NORM 2.4 ± 5.0%; p = 0.073, ES = 0.32). This small, beneficial effect on the self-paced endurance cycling performance was not explained by the change in VO2max (HYPER 1.1 ± 3.8%, NORM 0.0 ± 3.7%; p = 0.55, ES = 0.08), blood volume and hemoglobin mass, mitochondrial oxidative phosphorylation capacity (permeabilized fibers: HYPER 27.3 ± 46.0%, NORM 16.5 ± 49.1%; p = 0.37, ES = 3.24 and in isolated mitochondria: HYPER 26.1 ± 80.1%, NORM 15.9 ± 73.3%; p = 0.66, ES = 0.51), or markers of mitochondrial content which were similar between groups post intervention. Conclusions: This study showed that 6 weeks hyperoxic-supplemented HIIT led to marginal gain in cycle performance in already trained cyclists without change in VO2max, blood volume, hemoglobin mass, mitochondrial oxidative phosphorylation capacity, or exercise efficiency. The underlying mechanisms for the potentially meaningful performance effects of hyperoxia training remain unexplained and may raise ethical questions for elite sport.

Place, publisher, year, edition, pages
Frontiers Media S.A., 2019. Vol. 10, article id 730
Keywords [en]
OXPHOS, VO2max, cycling performance, high-intensity interval training, hyperoxia, mitochondria
National Category
Sport and Fitness Sciences
Research subject
Medicine/Technology
Identifiers
URN: urn:nbn:se:gih:diva-5805DOI: 10.3389/fphys.2019.00730ISI: 000472046700001PubMedID: 31258485OAI: oai:DiVA.org:gih-5805DiVA, id: diva2:1342819
Available from: 2019-08-14 Created: 2019-08-14 Last updated: 2019-08-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Cardinale, Daniele A.Larsen, Filip JEkblom, Björn

Search in DiVA

By author/editor
Cardinale, Daniele A.Larsen, Filip JEkblom, Björn
By organisation
Research group for Mitokondriell funktion och metabolisk kontrollDepartment of Sport and Health SciencesBjörn Ekblom's research group
In the same journal
Frontiers in Physiology
Sport and Fitness Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 52 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf