Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Relationships between heart rate and oxygen uptake in laboratory conditions and in bicycling commuting
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, The Research Unit for Movement, Health and Environment.
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, The Research Unit for Movement, Health and Environment.ORCID iD: 0000-0001-8161-5610
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, The Research Unit for Movement, Health and Environment.ORCID iD: 0000-0003-3547-425X
2016 (English)Conference paper, Oral presentation only (Refereed)
Abstract [en]

Introduction. Measuring the energetic demands of habitual commuter cyclists is essential to create more accurate methods for measuring active commuting so as to be able to objectively determine the impact that cycle commuting can have on population health.

Heart rate (HR) can be used as an indicator of aerobic processes while commuter cycling as long as the relationship between oxygen uptake (VO2) and HR is established in laboratory conditions. However in the field, environmental aspects might introduce effects of stress that change the relationship. Thus measurements need also to be performed in the field in order to explore the HR-VO2 relationship between the two conditions.

Methods. Metabolic measurements were performed in the laboratory as well as in the field using 20 habitual commuter cyclists (10 males and 10 females) aged 44 ± 3 yrs. A validated stationary as well as a portable metabolic system was used (Rosdahl et al. 2010; 2016; Salier-Eriksson et al. 2012). A comparison was made between the laboratory and field conditions of the HR-VO2 relationship.

Results and Discussion. Based on the average heart rate, the measured oxygen uptake was about 2.5 % lower (n.s.) than the expected levels based on the steady state HR-VO2 relationships in the laboratory. Thus, the results indicate that the HR-VO2 relationships in the field were comparable to those measured in the laboratory on a group level. However, relatively large individual differences were found.

References

Rosdahl, H., Gullstrand, L., Salier Eriksson, J., Johansson, P. & Schantz, P. 2010. Evaluation of the Oxycon Mobile metabolic system against the Douglas bag method. Eur J Appl Physiol 109 (2):159-71.

Rosdahl, H., Salier Eriksson, J. & Schantz, P. 2016. Validation of data collected with mobile metabolic measurement systems over time during active commuting. Proceedings of the 21st Annual Congress of The European College of Sport Sciences, Vienna, Austria, 6-8 July (Abstract).  

Salier Eriksson, J., Rosdahl, H. & Schantz, P. 2012. Validity of the Oxycon Mobile metabolic system under field measuring conditions. Eur J Appl Physiol, 112 (1): 345-355.

 

 

 

Place, publisher, year, edition, pages
2016.
National Category
Medical and Health Sciences
Research subject
Medicine/Technology
Identifiers
URN: urn:nbn:se:gih:diva-4652OAI: oai:DiVA.org:gih-4652DiVA: diva2:1049273
Conference
21st European College of Sport Sciences (ECSS) Congress 6-9 July 2016 Vienna, Austria
Available from: 2016-11-24 Created: 2016-11-24 Last updated: 2017-03-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Link to congress

Search in DiVA

By author/editor
Salier Eriksson, JaneRosdahl, HansSchantz, Peter
By organisation
The Research Unit for Movement, Health and Environment
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 42 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf