Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Resistance Exercise Attenuates Mitochondrial Function: Effects Of NSAID Intake And Eccentric Overload Training
Swedish School of Sport and Health Sciences, GIH, Department of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Research group for Mitokondriell funktion och metabolisk kontroll.ORCID iD: 0000-0002-8607-550X
Show others and affiliations
2017 (English)Conference paper, Poster (Refereed)
Abstract [en]

Although nonsteroidal antiinflammatorydrugs (NSAIDs) have been shown to modulate skeletal muscle adaptations and protein metabolism in response toresistance exercise, little is known about the effects of NSAIDs on mitochondrial function. Thus, the current study aimed to examine the effects of resistanceexercise with concomitant NSAID consumption on mitochondrial oxidative phosphorylation in skeletal muscle. Twenty participants were randomized in asingleblindedfashion to either an experimental group receiving ibuprofen (IBU: 27±5 yr; n=11; 1200 mg/d) or a control group receiving a lowdoseacetylsalicylic acid (CON: 26±4 yr; n=9; 75 mg/d) During this period, subjects performed 8 weeks of supervised resistance exercise involving the kneeextensors muscles. Each of the subject’s legs were randomized to complete the training program using either a flywheel (FW) device emphasizing eccentricoverload,or a traditional weight stack machine (WS). Maximal mitochondrial oxidative phosphorylation (OXPHOS) from permeabilized skeletal muscle bundleswas assessed using high resolution respirometry before and after the training intervention. Citrate synthase activity was assessed using spectrophotometrictechniques. After training, OXPHOS decreased (P<0.05) in both IBU (23%) and CON (29%) with no difference across medical treatments. Although OXPHOSdecreased in both legs, the decrease was greater (interaction P= 0.015) in WS (33%, P= 0.015) than in FW (19%, P= 0.078). Citrate synthase (CS) did notchange after the intervention. The increase in quadriceps muscle volume was not significantly correlated with the change in OXPHOS (R=0.15). These resultssuggest that 1) eight weeks of resistance training reduces mitochondrial function but not mitochondrial content, 2) The decreased mitochondrial function withresistance exercise was not affected by ibuprofen consumption, 3) flywheel resistance training, emphasizing eccentric overload, rescues some of thereduction in mitochondrial function seen with conventional resistance training.

Place, publisher, year, edition, pages
2017.
Keyword [en]
Mitochondrial function ; NSAID ; resistance training
National Category
Medicinal Chemistry Physiology Pharmacology and Toxicology
Research subject
Medicine/Technology
Identifiers
URN: urn:nbn:se:gih:diva-4633OAI: oai:DiVA.org:gih-4633DiVA: diva2:1045087
Conference
ACSM's 64th Annual Meeting, 8th World Congress on Exercise is Medicine and World Congress on the Basic Science of Exercise and the Brain (American College of Sports Medicine). 30 May – 03 Jun, 2017 Denver.
Available from: 2017-05-31 Created: 2016-11-08 Last updated: 2016-11-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Link to meeting

Search in DiVA

By author/editor
Cardinale, Daniele A.Larsen, Filip J.
By organisation
Research group for Mitokondriell funktion och metabolisk kontroll
Medicinal ChemistryPhysiologyPharmacology and Toxicology

Search outside of DiVA

GoogleGoogle Scholar

Total: 19 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf