Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dynamic regulation of metabolic efficiency explains tolerance to acute hypoxia in humans.
Gymnastik- och idrottshögskolan, GIH, Institutionen för idrotts- och hälsovetenskap, Åstrandlaboratoriet, Björn Ekbloms och Mats Börjessons forskningsgrupp.ORCID-id: 0000-0002-4030-5437
Visa övriga samt affilieringar
2014 (Engelska)Ingår i: The FASEB Journal, ISSN 0892-6638, E-ISSN 1530-6860, Vol. 28, nr 10, s. 4303-11Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The maximum power principle dictates that open biological systems tend to self-organize to a level of efficiency that allows maximal power production. Applying this principle to cellular energetics and whole-body physiology would suggest that for every metabolic challenge, an optimal efficiency exists that maximizes power production. On exposure to hypoxia, it would be favorable if metabolic efficiency would rapidly adjust so as to better preserve work performance. We tested this idea in humans by measuring metabolic efficiency and exercise tolerance under normoxic (Fio2=20.9%) and hypoxic (Fio2=16%) conditions, where Fio2 is fraction of inhaled oxygen. The results were compared with respirometric analyses of skeletal muscle mitochondria from the same individuals. We found that among healthy trained subjects (n=14) with a wide range of metabolic efficiency (ME), those with a high ME during normoxic exercise were able to better maintain exercise capacity (Wmax) in hypoxia. On hypoxic exposure, these subjects acutely decreased their efficiency from 19.2 to 17.4%, thereby likely shifting it closer to a degree of efficiency where maximal power production is achieved. In addition, mitochondria from these subjects had a lower intrinsic respiration compared to subjects that showed a large drop in Wmax in hypoxia An acute shift in efficiency was also demonstrated in isolated mitochondria exposed to physiological levels of hypoxia as P/O ratio increased from 0.9 to 1.3 with hypoxic exposure. These findings suggest the existence of a physiological adaptive response by which metabolic efficiency is dynamically optimized to maximize power production.-Schiffer, T. A., Ekblom, B., Lundberg, J. O., Weitzberg, E., Larsen, F. J. Dynamic regulation of metabolic efficiency explains tolerance to acute hypoxia in humans.

Ort, förlag, år, upplaga, sidor
2014. Vol. 28, nr 10, s. 4303-11
Nationell ämneskategori
Fysiologi
Forskningsämne
Medicin/Teknik
Identifikatorer
URN: urn:nbn:se:gih:diva-3484DOI: 10.1096/fj.14-251710PubMedID: 24970395OAI: oai:DiVA.org:gih-3484DiVA, id: diva2:753364
Tillgänglig från: 2014-10-07 Skapad: 2014-10-07 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Ekblom, Björn

Sök vidare i DiVA

Av författaren/redaktören
Ekblom, Björn
Av organisationen
Björn Ekbloms och Mats Börjessons forskningsgrupp
I samma tidskrift
The FASEB Journal
Fysiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 123 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf