Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using an extended kalman filter for rigid body pose estimation.
Gymnastik- och idrottshögskolan, GIH, Institutionen för idrotts- och hälsovetenskap, Laboratoriet för biomekanik och motorisk kontroll (BMC).
2005 (Engelska)Ingår i: Journal of Biomechanical Engineering, ISSN 0148-0731, E-ISSN 1528-8951, Vol. 127, nr 3, s. 475-83Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Rigid body pose is commonly represented as the rigid body transformation from one (often reference) pose to another This is usually computed for each frame of data without any assumptions or restrictions on the temporal change of the pose. The most common algorithm was proposed by Söderkvist and Wedin (1993, "Determining the Movements of the Skeleton Using Well-configured Markers," J. Biomech., 26, pp. 1473-1477), and implies the assumption that measurement errors are isotropic and homogenous. This paper describes an alternative method based on a state space formulation and the application of an extended Kalman filter (EKF). State space models are formulated, which describe the kinematics of the rigid body. The state vector consists of six generalized coordinates (corresponding to the 6 degrees of freedom), and their first time derivatives. The state space models have linear dynamics, while the measurement function is a non-linear relation between the state vector and the observations (marker positions). An analytical expression for the linearized measurement function is derived. Tracking the rigid body motion using an EKF enables the use of a priori information on the measurement noise and type of motion to tune the filter. The EKF is time variant, which allows for a natural way of handling temporarily missing marker data. State updates are based on all the information available at each time step, even when data from fewer than three markers are available. Comparison with the method of Söderkvist and Wedin on simulated data showed a considerable improvement in accuracy with the proposed EKF method when marker data was temporarily missing. The proposed method offers an improvement in accuracy of rigid body pose estimation by incorporating knowledge of the characteristics of the movement and the measurement errors. Analytical expressions for the linearized system equations are provided, which eliminate the need for approximate discrete differentiation and which facilitate a fast implementation.

Ort, förlag, år, upplaga, sidor
2005. Vol. 127, nr 3, s. 475-83
Nationell ämneskategori
Medicin och hälsovetenskap
Identifikatorer
URN: urn:nbn:se:gih:diva-989PubMedID: 16060354OAI: oai:DiVA.org:gih-989DiVA, id: diva2:236736
Tillgänglig från: 2009-09-24 Skapad: 2009-09-24 Senast uppdaterad: 2017-12-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

PubMedLink to Full Text

Personposter BETA

Halvorsen, Kjartan

Sök vidare i DiVA

Av författaren/redaktören
Halvorsen, Kjartan
Av organisationen
Laboratoriet för biomekanik och motorisk kontroll (BMC)
I samma tidskrift
Journal of Biomechanical Engineering
Medicin och hälsovetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetricpoäng

pubmed
urn-nbn
Totalt: 212 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf