Gymnastik- och idrottshögskolan, GIH

Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Ultrafast molecular motor driven nanoseparation and biosensing
Linneuniversitetet.ORCID-id: 0000-0001-6878-3142
Visa övriga samt affilieringar
2013 (Engelska)Ingår i: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 48, s. 145-152Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Portable biosensor systems would benefit from reduced dependency on external power supplies as well as from further miniaturization and increased detection rate. Systems built around self-propelled biological molecular motors and cytoskeletal filaments hold significant promise in these regards as they are built from nanoscale components that enable nanoseparation independent of fluidic pumping. Previously reported microtubule-kinesin based devices are slow, however, compared to several existing biosensor systems. Here we demonstrate that this speed limitation can be overcome by using the faster actomyosin motor system. Moreover, due to lower flexural rigidity of the actin filaments, smaller features can be achieved compared to microtubule-based systems, enabling further miniaturization. Using a device designed through optimization by Monte Carlo simulations, we demonstrate extensive myosin driven enrichment of actin filaments on a detector area of less than 10 μm2, with a concentration half-time of approximately 40 s. We also show accumulation of model analyte (streptavidin at nanomolar concentration in nanoliter effective volume) detecting increased fluorescence intensity within seconds after initiation of motor-driven transportation from capture regions. We discuss further optimizations of the system and incorporation into a complete biosensing workflow.

Ort, förlag, år, upplaga, sidor
Elsevier , 2013. Vol. 48, s. 145-152
Nyckelord [en]
Actin filament; Diagnostics; Electron beam lithography; Heavy meromyosin; Nanoseparation; Monte-Carlo simulation, Biochemistry and Molecular Biology, Biokemi och molekylärbiologi
Nationell ämneskategori
Biokemi Molekylärbiologi
Identifikatorer
URN: urn:nbn:se:gih:diva-6446DOI: 10.1016/j.bios.2013.03.071OAI: oai:DiVA.org:gih-6446DiVA, id: diva2:1509838
Tillgänglig från: 2020-12-14 Skapad: 2020-12-14 Senast uppdaterad: 2025-02-20Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltexthttp://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-28382

Person

ten Siethoff, Lasse

Sök vidare i DiVA

Av författaren/redaktören
ten Siethoff, Lasse
I samma tidskrift
Biosensors & bioelectronics
BiokemiMolekylärbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 57 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf