Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Leg and arm lactate and substrate kinetics during exercise.
The Copenhagen Muscle Research Centre, Rigshospitalet, 2200 Copenhagen N, Denmark.
Gymnastik- och idrottshögskolan, GIH, Institutionen för idrotts- och hälsovetenskap.ORCID-id: 0000-0001-8161-5610
Vise andre og tillknytning
2003 (engelsk)Inngår i: American Journal of Physiology. Endocrinology and Metabolism, ISSN 0193-1849, E-ISSN 1522-1555, Vol. 284, nr 1, s. E193-205Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

To study the role of muscle mass and muscle activity on lactate and energy kinetics during exercise, whole body and limb lactate, glucose, and fatty acid fluxes were determined in six elite cross-country skiers during roller-skiing for 40 min with the diagonal stride (Continuous Arm + Leg) followed by 10 min of double poling and diagonal stride at 72-76% maximal O(2) uptake. A high lactate appearance rate (R(a), 184 +/- 17 micromol x kg(-1) x min(-1)) but a low arterial lactate concentration ( approximately 2.5 mmol/l) were observed during Continuous Arm + Leg despite a substantial net lactate release by the arm of approximately 2.1 mmol/min, which was balanced by a similar net lactate uptake by the leg. Whole body and limb lactate oxidation during Continuous Arm + Leg was approximately 45% at rest and approximately 95% of disappearance rate and limb lactate uptake, respectively. Limb lactate kinetics changed multiple times when exercise mode was changed. Whole body glucose and glycerol turnover was unchanged during the different skiing modes; however, limb net glucose uptake changed severalfold. In conclusion, the arterial lactate concentration can be maintained at a relatively low level despite high lactate R(a) during exercise with a large muscle mass because of the large capacity of active skeletal muscle to take up lactate, which is tightly correlated with lactate delivery. The limb lactate uptake during exercise is oxidized at rates far above resting oxygen consumption, implying that lactate uptake and subsequent oxidation are also dependent on an elevated metabolic rate. The relative contribution of whole body and limb lactate oxidation is between 20 and 30% of total carbohydrate oxidation at rest and during exercise under the various conditions. Skeletal muscle can change its limb net glucose uptake severalfold within minutes, causing a redistribution of the available glucose because whole body glucose turnover was unchanged.

sted, utgiver, år, opplag, sider
2003. Vol. 284, nr 1, s. E193-205
HSV kategori
Identifikatorer
URN: urn:nbn:se:gih:diva-1061DOI: 10.1152/ajpendo.00273.2002PubMedID: 12388120OAI: oai:DiVA.org:gih-1061DiVA, id: diva2:284552
Tilgjengelig fra: 2010-01-07 Laget: 2010-01-07 Sist oppdatert: 2017-12-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Rosdahl, Hans

Søk i DiVA

Av forfatter/redaktør
Rosdahl, Hans
Av organisasjonen
I samme tidsskrift
American Journal of Physiology. Endocrinology and Metabolism

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 66 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf