Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Detecting Prolonged Sitting Bouts with the ActiGraph GT3X.
Karolinska Institutet, Stockholm, Sweden.
Karolinska Institutet, Stockholm, Sweden.
ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland..
Gymnastik- och idrottshögskolan, GIH, Institutionen för idrotts- och hälsovetenskap, Åstrandlaboratoriet. Karolinska Institutet, Stockholm, Sweden.ORCID-id: 0000-0002-0079-124x
Vise andre og tillknytning
2019 (engelsk)Inngår i: Scandinavian Journal of Medicine and Science in Sports, ISSN 0905-7188, E-ISSN 1600-0838Artikkel i tidsskrift (Fagfellevurdert) Epub ahead of print
Abstract [en]

The ActiGraph has a high ability to measure physical activity, however, it lacks an accurate posture classification to measure sedentary behaviour. The aim of the present study was to develop an ActiGraph (waist-worn, 30Hz) posture classification to detect prolonged sitting bouts, and to compare the classification to proprietary ActiGraph data. The activPAL, a highly valid posture classification device, served as reference criterion.1 Both sensors were worn by 38 office workers over a median duration of 9 days. An automated feature selection extracted the relevant signal information for a minute based posture classification. The machine-learning algorithm with optimal feature number to predict the time in prolonged sitting bouts (≥5 and ≥10 minutes) was searched and compared to the activPAL using Bland-Altman statistics. The comparison included optimised and frequently used cut-points (100 and 150 counts-per-minute (cpm), with and without low-frequency-extension (LFE) filtering). The new algorithm predicted the time in prolonged sitting bouts most accurate (bias ≤7 minutes/day). Of all proprietary ActiGraph methods, only 150 cpm without LFE predicted the time in prolonged sitting bouts non-significantly different from the activPAL (bias ≤18 minutes/day). However, the frequently used 100 cpm with LFE accurately predicted total sitting time (bias ≤7 minutes/day). To study the health effects of ActiGraph measured prolonged sitting, we recommend using the new algorithm. In case a cut-point is used, we recommend 150 cpm without LFE to measure prolonged sitting, and 100 cpm with LFE to measure total sitting time. However, both cpm cut-points are not recommended for a detailed bout analysis.

sted, utgiver, år, opplag, sider
2019.
Emneord [en]
Automated Feature Selection, Bout Analysis, Machine Learning, Posture Prediction, Sedentary Behaviour, activPAL
HSV kategori
Forskningsprogram
Medicin/Teknik
Identifikatorer
URN: urn:nbn:se:gih:diva-5934DOI: 10.1111/sms.13601ISI: 000503822900001PubMedID: 31743494OAI: oai:DiVA.org:gih-5934DiVA, id: diva2:1374576
Tilgjengelig fra: 2019-12-02 Laget: 2019-12-02 Sist oppdatert: 2020-01-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Blom, VictoriaEkblom, Örjan

Søk i DiVA

Av forfatter/redaktør
Blom, VictoriaEkblom, Örjan
Av organisasjonen
I samme tidsskrift
Scandinavian Journal of Medicine and Science in Sports

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 11 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf