Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
SR Ca2+ leak in skeletal muscle fibers acts as an intracellular signal to increase fatigue resistance.
Karolinska Institutet.
Gymnastik- och idrottshögskolan, GIH, Institutionen för idrotts- och hälsovetenskap, Åstrandlaboratoriet, Björn Ekbloms forskningsgrupp.ORCID-id: 0000-0002-0642-4838
Karolinska Institutet.
Karolinska Institutet.
Vise andre og tillknytning
2019 (engelsk)Inngår i: The Journal of General Physiology, ISSN 0022-1295, E-ISSN 1540-7748, Vol. 151, nr 4, s. 567-577, artikkel-id jgp.201812152Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Effective practices to improve skeletal muscle fatigue resistance are crucial for athletes as well as patients with dysfunctional muscles. To this end, it is important to identify the cellular signaling pathway that triggers mitochondrial biogenesis and thereby increases oxidative capacity and fatigue resistance in skeletal muscle fibers. Here, we test the hypothesis that the stress induced in skeletal muscle fibers by endurance exercise causes a reduction in the association of FK506-binding protein 12 (FKBP12) with ryanodine receptor 1 (RYR1). This will result in a mild Ca2+ leak from the sarcoplasmic reticulum (SR), which could trigger mitochondrial biogenesis and improved fatigue resistance. After giving mice access to an in-cage running wheel for three weeks, we observed decreased FKBP12 association to RYR1, increased baseline [Ca2+]i, and signaling associated with greater mitochondrial biogenesis in muscle, including PGC1α1. After six weeks of voluntary running, FKBP12 association is normalized, baseline [Ca2+]i returned to values below that of nonrunning controls, and signaling for increased mitochondrial biogenesis was no longer present. The adaptations toward improved endurance exercise performance that were observed with training could be mimicked by pharmacological agents that destabilize RYR1 and thereby induce a modest Ca2+ leak. We conclude that a mild RYR1 SR Ca2+ leak is a key trigger for the signaling pathway that increases muscle fatigue resistance.

sted, utgiver, år, opplag, sider
Rockefeller University Press, 2019. Vol. 151, nr 4, s. 567-577, artikkel-id jgp.201812152
HSV kategori
Forskningsprogram
Medicin/Teknik
Identifikatorer
URN: urn:nbn:se:gih:diva-5547DOI: 10.1085/jgp.201812152ISI: 000462865900016PubMedID: 30635368OAI: oai:DiVA.org:gih-5547DiVA, id: diva2:1279231
Tilgjengelig fra: 2019-01-16 Laget: 2019-01-16 Sist oppdatert: 2019-04-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Mattsson, C. MikaelEkblom, Björn

Søk i DiVA

Av forfatter/redaktør
Mattsson, C. MikaelEkblom, Björn
Av organisasjonen
I samme tidsskrift
The Journal of General Physiology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 81 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf