Gymnastik- och idrottshögskolan, GIH

Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
Link to record
Permanent link

Direct link
Publications (10 of 16) Show all publications
Horwath, O., Moberg, M., Edman, S., Philp, A. & Apro, W. (2024). Ageing leads to selective type II myofibre deterioration and denervation independent of reinnervative capacity in human skeletal muscle.. Experimental Physiology
Open this publication in new window or tab >>Ageing leads to selective type II myofibre deterioration and denervation independent of reinnervative capacity in human skeletal muscle.
Show others...
2024 (English)In: Experimental Physiology, ISSN 0958-0670, E-ISSN 1469-445XArticle in journal (Refereed) Epub ahead of print
Abstract [en]

Age-related loss of muscle mass and function is underpinned by changes at the myocellular level. However, our understanding of the aged muscle phenotype might be confounded by factors secondary to ageing per se, such as inactivity and adiposity. Here, using healthy, lean, recreationally active, older men, we investigated the impact of ageing on myocellular properties in skeletal muscle. Muscle biopsies were obtained from young men (22 ± 3 years, n = 10) and older men (69 ± 3 years, n = 11) matched for health status, activity level and body mass index. Immunofluorescence was used to assess myofibre composition, morphology (size and shape), capillarization, the content of satellite cells and myonuclei, the spatial relationship between satellite cells and capillaries, denervation and myofibre grouping. Compared with young muscle, aged muscle contained 53% more type I myofibres, in addition to smaller (-32%) and misshapen (3%) type II myofibres (P < 0.05). Aged muscle manifested fewer capillaries (-29%) and satellite cells (-38%) surrounding type II myofibres (P < 0.05); however, the spatial relationship between these two remained intact. The proportion of denervated myofibres was ∼2.6-fold higher in old than young muscle (P < 0.05). Aged muscle had more grouped type I myofibres (∼18-fold), primarily driven by increased size of existing groups rather than increased group frequency (P < 0.05). Aged muscle displayed selective deterioration of type II myofibres alongside increased denervation and myofibre grouping. These data are key to understanding the cellular basis of age-related muscle decline and reveal a pressing need to fine-tune strategies to preserve type II myofibres and innervation status in ageing populations.

Place, publisher, year, edition, pages
John Wiley & Sons, 2024
Keywords
NCAM, Pax7, ageing, human skeletal muscle, sarcopenia
National Category
Geriatrics Physiology
Research subject
Medicine/Technology
Identifiers
urn:nbn:se:gih:diva-8397 (URN)10.1113/EP092222 (DOI)001344374000001 ()39466960 (PubMedID)2-s2.0-85207868779 (Scopus ID)
Available from: 2024-11-20 Created: 2024-11-20 Last updated: 2024-11-20
Horwath, O., Moberg, M., Hodson, N., Edman, S., Johansson, M., Andersson, E., . . . Apro, W. (2024). Anabolic Sensitivity in Healthy, Lean, Older Men Is Associated With Higher Expression of Amino Acid Sensors and mTORC1 Activators Compared to Young. Journal of Cachexia, Sarcopenia and Muscle
Open this publication in new window or tab >>Anabolic Sensitivity in Healthy, Lean, Older Men Is Associated With Higher Expression of Amino Acid Sensors and mTORC1 Activators Compared to Young
Show others...
2024 (English)In: Journal of Cachexia, Sarcopenia and Muscle, ISSN 2190-5991, E-ISSN 2190-6009Article in journal (Refereed) Epub ahead of print
Abstract [en]

Background

Sarcopenia is thought to be underlined by age-associated anabolic resistance and dysregulation of intracellular signalling pathways. However, it is unclear whether these phenomena are driven by ageing per se or other confounding factors.

Methods

Lean and healthy young (n = 10, 22 ± 3 years, BMI; 23.4 ± 0.8 kg/m2) and old men (n = 10, 70 ± 3 years, BMI; 22.7 ± 1.3 kg/m2) performed unilateral resistance exercise followed by intake of essential amino acids (EAA). Muscle biopsies were collected from the rested and the exercised leg before, immediately after and 60 and 180 min after EAA intake. Muscle samples were analysed for amino acid concentrations, muscle protein synthesis (MPS) and associated anabolic signalling.

Results

Following exercise, peak plasma levels of EAA and leucine were similar between groups, but the area under the curve was ~11% and ~28% lower in Young (p < 0.01). Absolute levels of muscle EAA and leucine peaked 60 min after exercise, with ~15 and ~21% higher concentrations in the exercising leg (p < 0.01) but with no difference between groups. MPS increased in both the resting (~0.035%·h−1 to 0.056%·h−1, p < 0.05) and exercising leg (~0.035%·h−1 to 0.083%·h−1, p < 0.05) with no difference between groups. Phosphorylation of S6K1Thr389 increased to a similar extent in the exercising leg in both groups but was 2.8-fold higher in the resting leg of Old at the 60 min timepoint (p < 0.001). Phosphorylation of 4E-BP1Ser65 increased following EAA intake and exercise, but differences between legs were statistically different only at 180 min (p < 0.001). However, phosphorylation of this site was on average 78% greater across all timepoints in Old (p < 0.01). Phosphorylation of eEF2Thr56 was reduced (~66% and 39%) in the exercising leg at both timepoints after EAA intake and exercise, with no group differences (p < 0.05). However, phosphorylation at this site was reduced by ~27% also in the resting leg at 60 min, an effect that was only seen in Old (p < 0.01). Total levels of Rheb (~45%), LAT1 (~31%) and Rag B (~31%) were higher in Old (p < 0.001).

Conclusion

Lean and healthy old men do not manifest AR as evidenced by potent increases in MPS and mTORC1 signalling following EAA intake and exercise. Maintained anabolic sensitivity with age appears to be a function of a compensatory increase in basal levels of proteins involved in anabolic signalling. Therefore, our results suggest that age per se does not appear to cause AR in human skeletal muscle.

Place, publisher, year, edition, pages
John Wiley & Sons, 2024
Keywords
amino acid sensing, cell signalling, protein synthesis, resistance exercise, sarcopenia
National Category
Physiology
Research subject
Medicine/Technology
Identifiers
urn:nbn:se:gih:diva-8394 (URN)10.1002/jcsm.13613 (DOI)39558870 (PubMedID)2-s2.0-85209789027 (Scopus ID)
Funder
Åke Wiberg Foundation, M17‐0259EU, Horizon Europe, 707336Lars Hierta Memorial Foundation, FO2017-0325
Available from: 2024-11-20 Created: 2024-11-20 Last updated: 2024-12-04
Blackwood, S. J., Tischer, D., van de Ven, M. P., Pontén, M., Edman, S., Horwath, O., . . . Katz, A. (2024). Elevated heart rate and decreased muscle endothelial nitric oxide synthase in early development of insulin resistance.. American Journal of Physiology. Endocrinology and Metabolism, 327(2), E172-E182
Open this publication in new window or tab >>Elevated heart rate and decreased muscle endothelial nitric oxide synthase in early development of insulin resistance.
Show others...
2024 (English)In: American Journal of Physiology. Endocrinology and Metabolism, ISSN 0193-1849, E-ISSN 1522-1555, Vol. 327, no 2, p. E172-E182Article in journal (Refereed) Published
Abstract [en]

Insulin resistance (IR) is a risk factor for the development of several major metabolic diseases. Muscle fiber composition is established early in life and is associated with insulin sensitivity. Hence, muscle fiber composition was used to identify early defects in the development of IR in healthy young individuals in the absence of clinical manifestations. Biopsies were obtained from the thigh muscle, followed by an intravenous glucose tolerance test. Indices of insulin action were calculated and cardiovascular measurements, analyses of blood and muscle were performed. Whole-body insulin sensitivity (SIgalvin) was positively related to expression of type I muscle fibers (r=0.49; P<0.001) and negatively related to resting heart rate (HR, r=-0.39; P<0.001), which was also negatively related to expression of type I muscle fibers (r=-0.41; P<0.001). Muscle protein expression of endothelial nitric oxide synthase (eNOS), whose activation results in vasodilation, was measured in two subsets of subjects expressing a high percentage of type I fibers (59±6%; HR = 57±9 beats/min; SIgalvin = 1.8±0.7 units) or low percentage of type I fibers (30±6%; HR = 71±11; SIgalvin = 0.8±0.3 units; P<0.001 for all variables vs. first group). eNOS expression was: 1. higher in subjects with high type I expression; 2. almost two-fold higher in pools of type I vs. II fibers; 3. only detected in capillaries surrounding muscle fibers; and 4. linearly associated with SIgalvin. These data demonstrate that an altered function of the autonomic nervous system and a compromised capacity for vasodilation in the microvasculature occur early in the development of IR.

Place, publisher, year, edition, pages
American Physiological Society, 2024
Keywords
Heart rate, Insulin resistance, Muscle fiber composition, Nitric oxide synthase, epabs, e-pabs, brain health, hjärnhälsa
National Category
Physiology Sport and Fitness Sciences
Research subject
Medicine/Technology
Identifiers
urn:nbn:se:gih:diva-8276 (URN)10.1152/ajpendo.00148.2024 (DOI)001290185800002 ()38836779 (PubMedID)2-s2.0-85201861242 (Scopus ID)
Available from: 2024-06-07 Created: 2024-06-07 Last updated: 2024-09-20
Edman, S., Flockhart, M., Larsen, F. J. & Apro, W. (2024). Need for Speed: Human fast-twitch mitochondria favor power over efficiency.. Molecular Metabolism, 79, Article ID 101854.
Open this publication in new window or tab >>Need for Speed: Human fast-twitch mitochondria favor power over efficiency.
2024 (English)In: Molecular Metabolism, ISSN 2212-8778, Vol. 79, article id 101854Article in journal (Refereed) Published
Abstract [en]

OBJECTIVE: Human skeletal muscle consists of a mixture of slow- and fast-twitch fibers with distinct capacities for contraction mechanics, fermentation, and oxidative phosphorylation (OXPHOS). While the divergence in mitochondrial volume favoring slow-twitch fibers is well established, data on the fiber type-specific intrinsic mitochondrial function and morphology are highly limited with existing data mainly being generated in animal models. This highlights the need for more human data on the topic.

METHODS: Here, we utilized THRIFTY, a rapid fiber type identification protocol to detect, sort, and pool fast- and slow-twitch fibers within six hours of muscle biopsy sampling. Respiration of permeabilized fast- and slow-twitch fiber pools was then analyzed with high-resolution respirometry. Using standardized western blot procedures, muscle fiber pools were subsequently analyzed for control proteins and key proteins related to respiratory capacity.

RESULTS: Maximal complex I CI+II respiration was 25% higher in human slow-twitch fibers compared to fast-twitch fibers. However, per volume, the respiratory rate of mitochondria in fast-twitch fibers was approximately 50% higher for CI+II, which was primarily mediated through elevated CII respiration, but not CI or. Furthermore, the abundance of CII protein and proteins regulating cristae structure were disproportionally elevated in mitochondria of the fast-twitch fibers. The difference in intrinsic respiratory rate was not reflected in fatty acid- or complex I respiration.

CONCLUSION: Mitochondria of human fast-twitch muscle fibers compensate for their lack of volume by substantially elevating intrinsic respiratory rate through increased reliance on complex II.

Place, publisher, year, edition, pages
Elsevier, 2024
National Category
Physiology Sport and Fitness Sciences
Research subject
Medicine/Technology
Identifiers
urn:nbn:se:gih:diva-8000 (URN)10.1016/j.molmet.2023.101854 (DOI)001147759100001 ()38104652 (PubMedID)
Available from: 2023-12-20 Created: 2023-12-20 Last updated: 2024-02-22
Edman, S., Horwath, O., Van der Stede, T., Blackwood, S. J., Moberg, I., Strömlind, H., . . . Moberg, M. (2024). Pro-Brain-Derived Neurotrophic Factor (BDNF), but Not Mature BDNF, Is Expressed in Human Skeletal Muscle: Implications for Exercise-Induced Neuroplasticity.. Function, 5(3), Article ID zqae005.
Open this publication in new window or tab >>Pro-Brain-Derived Neurotrophic Factor (BDNF), but Not Mature BDNF, Is Expressed in Human Skeletal Muscle: Implications for Exercise-Induced Neuroplasticity.
Show others...
2024 (English)In: Function, E-ISSN 2633-8823, Vol. 5, no 3, article id zqae005Article in journal (Refereed) Published
Abstract [en]

Exercise promotes brain plasticity partly by stimulating increases in mature brain-derived neurotrophic factor (mBDNF), but the role of the pro-BDNF isoform in the regulation of BDNF metabolism in humans is unknown. We quantified the expression of pro-BDNF and mBDNF in human skeletal muscle and plasma at rest, after acute exercise (+/- lactate infusion), and after fasting. Pro-BDNF and mBDNF were analyzed with immunoblotting, enzyme-linked immunosorbent assay, immunohistochemistry, and quantitative polymerase chain reaction. Pro-BDNF was consistently and clearly detected in skeletal muscle (40-250 pg mg-1 dry muscle), whereas mBDNF was not. All methods showed a 4-fold greater pro-BDNF expression in type I muscle fibers compared to type II fibers. Exercise resulted in elevated plasma levels of mBDNF (55%) and pro-BDNF (20%), as well as muscle levels of pro-BDNF (∼10%, all P < 0.05). Lactate infusion during exercise induced a significantly greater increase in plasma mBDNF (115%, P < 0.05) compared to control (saline infusion), with no effect on pro-BDNF levels in plasma or muscle. A 3-day fast resulted in a small increase in plasma pro-BDNF (∼10%, P < 0.05), with no effect on mBDNF. Pro-BDNF is highly expressed in human skeletal muscle, particularly in type I fibers, and is increased after exercise. While exercising with higher lactate augmented levels of plasma mBDNF, exercise-mediated increases in circulating mBDNF likely derive partly from release and cleavage of pro-BDNF from skeletal muscle, and partly from neural and other tissues. These findings have implications for preclinical and clinical work related to a wide range of neurological disorders such as Alzheimer's, clinical depression, and amyotrophic lateral sclerosis.

Place, publisher, year, edition, pages
Oxford University Press, 2024
Keywords
exercise, fasting, lactate, muscle fiber type, neurotrophins, β-hydroxybutyrate
National Category
Physiology Sport and Fitness Sciences
Research subject
Medicine/Technology; Medicine/Technology
Identifiers
urn:nbn:se:gih:diva-8240 (URN)10.1093/function/zqae005 (DOI)001225915100002 ()38706964 (PubMedID)
Available from: 2024-05-24 Created: 2024-05-24 Last updated: 2024-06-07
Edman, S., Horwath, O. & Apro, W. (2023). THRIFTY - A High-throughput Single Muscle Fiber Typing Method Based on Immunofluorescence Detection. Bio-protocol, 13(10), Article ID e4678.
Open this publication in new window or tab >>THRIFTY - A High-throughput Single Muscle Fiber Typing Method Based on Immunofluorescence Detection
2023 (English)In: Bio-protocol, E-ISSN 2331-8325, Vol. 13, no 10, article id e4678Article in journal (Refereed) Published
Abstract [en]

Skeletal muscle consists of a mixture of fiber types with different functional and metabolic characteristics. The relative composition of these muscle fiber types has implications for muscle performance, whole-body metabolism, and health. However, analyses of muscle samples in a fiber type-dependent manner are very time consuming. Therefore, these are often neglected in favor of more time-efficient analyses on mixed muscle samples. Methods such as western blot and myosin heavy chain separation by SDS-PAGE have previously been utilized to fiber type-isolated muscle fibers. More recently, the introduction of the dot blot method significantly increased the speed of fiber typing. However, despite recent advancements, none of the current methodologies are feasible for large-scale investigations because of their time requirements. Here, we present the protocol for a new method, which we have named THRIFTY (high-THRoughput Immunofluorescence Fiber TYping), that enables rapid fiber type identification using antibodies towards the different myosin heavy chain (MyHC) isoforms of fast and slow twitch muscle fibers. First, a short segment (<1 mm) is cut off from isolated muscle fibers and mounted on a customized gridded microscope slide holding up to 200 fiber segments. Second, the fiber segments attached to the microscope slide are stained with MyHC-specific antibodies and then visualized using a fluorescence microscope. Lastly, the remaining pieces of the fibers can either be collected individually or pooled together with fibers of the same type for subsequent analyses. The THRIFTY protocol is approximately three times as fast as the dot blot method, which enables not only time-sensitive assays to be performed but also increases the feasibility to conduct large-scale investigations into fiber type specific physiology.

Place, publisher, year, edition, pages
Bio-protocol, 2023
Keywords
Muscle fiber type, Myosin heavy chain, Fiber type identification, Muscle
National Category
Physiology
Research subject
Medicine/Technology
Identifiers
urn:nbn:se:gih:diva-7950 (URN)10.21769/BioProtoc.4678 (DOI)001089324100006 ()37251094 (PubMedID)
Available from: 2023-11-20 Created: 2023-11-20 Last updated: 2023-11-20
Edman, S. (2022). Skeletal muscle fiber types in man: With special reference to anabolic signaling and mitochondrial bioenergetics. (Doctoral dissertation). Stockholm: Gymnastik och idrottshögskolan, GIH
Open this publication in new window or tab >>Skeletal muscle fiber types in man: With special reference to anabolic signaling and mitochondrial bioenergetics
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Human skeletal muscle consists of a mixture of slow-twitch (type I) and fast-twitch (type II) fibers. The type I fibers are endurance-oriented, with a metabolic system and infrastructure that supports aerobic metabolism. This entails a well-developed capillary grid and a mitochondrial network proportioned to the number of contractile units within the fiber. These fibers generally have slower and less forceful contraction mechanics and more limited muscle growth as a resource-efficient metabolic energy system is prioritized over increasing the number of contractile units. By contrast, type II fibers prioritize contractile capabilities and force generation at the cost of resource efficiency. These fibers have a substantially lower mitochondrial volume but prioritize structures and organelles that benefit muscle contraction instead. 

It is well known that resistance exercise combined with dietary protein intake stimulates the growth of contractile proteins leading to an increased muscle mass over time. Muscle mass accumulation is primarily driven by the amplification of muscle protein synthesis, which in turn is largely governed by the mTORC1 signaling pathway within the muscle cell. Little is known about how mTORC1 signaling regulates growth in the different fiber types. Furthermore, it is unknown whether blunted anabolic signaling in type II fibers of the elderly may explain why losses of muscle mass occur primarily in these fibers with advancing age.

Endurance exercise, on the other hand, primarily stimulates a prioritization to synthesize new mitochondria to support the high demand for sustainable aerobic energy output. However, it remains to be determined if mitochondria created within type I and type II fibers are equal, or whether they have adapted to their respective milieu in any way. 

Therefore, the aim of the current thesis was to investigate how the mTORC1 pathway in type I and type II fibers responds to resistance exercise and nutritional stimuli in the form of essential amino acids (EAA), and to determine if this response is influenced by age. Fiber type-specific mitochondrial populations, including their respiratory capacity, were also investigated. To facilitate these investigations, a new and improved method for muscle fiber type identification was developed.

In paper I, the phosphorylation of mTORC1 in response to resistance exercise and EAA intake was examined in 684 individual muscle fibers. Unsurprisingly, a significant increase in mTORC1 signaling was seen following the combination of resistance exercise and EAA intake, whereas the rise following resistance exercise alone was more modest. However, no evidence of a discrete response in the different fiber types was found. 

In paper II, a new method was developed to facilitate the work surrounding fiber type-specific muscle physiology by limiting the extreme time requirements of fiber type identification of large sample sets of muscle fibers. The novel method, which was named THRIFTY, allows an experienced technician to classify over 800 fibers in under 11h.

Paper III utilizes the high throughput of the THRIFTY method described in paper II to create the most extensive study to date on individually dissected muscle fibers with 27 602 included fibers. Here, the aim was to investigate whether the fiber type-specific muscle atrophy of the type II fibers in aging could be explained by an onset of anabolic resistance in these fibers. For this investigation, ten young and ten elderly men were recruited to perform a unilateral resistance exercise session followed by ingestion of EAA. This paper showed a slightly elevated mTORC1 signaling response in type I fibers. However, there were no signs of blunted mTORC1 signaling in the elderly. 

In paper IV, the high speed of the THRIFTY method was utilized to analyze the mitochondrial respiratory function of permeabilized type I and type II muscle fibers. In addition, the intrinsic protein expression of mitochondria in the type I and type II muscle fibers was analyzed. As expected, a higher volume of mitochondria and a greater respiratory rate in the type I fibers were found. However, on a per mitochondria basis, a higher maximal respiratory rate was observed in type II fibers together with increased levels of proteins in the electron transport chain. Likewise, proteins regulating mitochondrial fission and fusion were more highly expressed in the type II fiber mitochondria, which may be a compensatory mechanism for the low volume. 

In conclusion, both fiber types show robust increases in mTORC1 signaling in response to exercise and EAA ingestion. The results indicate that the response is slightly stronger in the type I fibers, which is contrary to what was predicted. Moreover, the highly specific type II fiber atrophy seen with aging cannot be explained by a blunted anabolic response in these fibers. Surprisingly, the mitochondria of type II fibers possess a higher respiratory capacity. However, this discrepancy is concealed by the vast difference in mitochondrial volume favoring type I fibers, ultimately leading to an overall greater respiratory rate in the type I fibers.

Place, publisher, year, edition, pages
Stockholm: Gymnastik och idrottshögskolan, GIH, 2022. p. 107
Series
Avhandlingsserie för Gymnastik- och idrottshögskolan ; 27
Keywords
mTORC1, THRIFTY, fiber type identification, muscle growth, aging, sarcopenia, mitochondrial function, oxphos, metabolism
National Category
Sport and Fitness Sciences
Research subject
Medicine/Technology
Identifiers
urn:nbn:se:gih:diva-7394 (URN)978-91-986490-6-2 (ISBN)
Public defence
2022-12-16, Aulan, Lidingövägen 1, Stockholm, 09:00 (English)
Opponent
Supervisors
Available from: 2022-11-21 Created: 2022-11-18 Last updated: 2022-11-25Bibliographically approved
Horwath, O., Edman, S., Andersson, A., Larsen, F. J. & Apro, W. (2022). THRIFTY: a novel high-throughput method for rapid fibre type identification of isolated skeletal muscle fibres.. Journal of Physiology, 600(20), 4421-4438
Open this publication in new window or tab >>THRIFTY: a novel high-throughput method for rapid fibre type identification of isolated skeletal muscle fibres.
Show others...
2022 (English)In: Journal of Physiology, ISSN 0022-3751, E-ISSN 1469-7793, Vol. 600, no 20, p. 4421-4438Article in journal (Refereed) Published
Abstract [en]

Fibre type-specific analyses are required for broader understanding of muscle physiology, but such analyses are difficult to conduct due to the extreme time requirements of dissecting and fibre typing individual fibres. Investigations are often confined to a small number of fibres from few participants with low representativeness of the entire fibre population and the participant population. To increase the feasibility of conducting large-scale fibre type-specific studies, a valid and rapid method for high-throughput fibre typing of individually dissected fibres was developed and named THRIFTY (for high-THRoughput Immunofluorescence Fibre TYping). Employing THRIFTY, 400 fibre segments were fixed onto microscope slides with a pre-printed coordinated grid system, probed with antibodies against myosin heavy chain (MyHC)-I and MyHC-II and classified using a fluorescence microscope. The validity and speed of THRIFTY was compared to a previously validated protocol (dot blot) on a fibre-to-fibre basis. Fibre pool purity was evaluated using 'gold standard' SDS-PAGE and silver staining. A modified THRIFTY-protocol using fluorescence western blot equipment was also validated. THRIFTY displayed excellent agreement with the dot blot protocol, κ = 0.955 (95% CI: 0.928, 0.982), P < 0.001. Both the original and modified THRIFTY protocols generated type I and type II fibre pools of absolute purity. Using THRIFTY, 400 fibres were typed just under 11 h, which was approximately 3 times faster than dot blot. THRIFTY is a novel and valid method with high versatility for very rapid fibre typing of individual fibres. THRIFTY can therefore facilitate the generation of large fibre pools for more extensive mechanistic studies into skeletal muscle physiology. KEY POINTS: Skeletal muscle is composed of different fibre types, each with distinct physiological properties. To fully understand how skeletal muscle adapts to external cues such as exercise, nutrition and ageing, fibre type-specific investigations are required. Such investigations are very difficult to conduct due to the extreme time requirements related to classifying individually isolated muscle fibres. To bypass this issue, we have developed a rapid and reliable method named THRIFTY which is cheap as well as versatile and which can easily be implemented in most laboratories. THRIFTY increases the feasibility of conducting larger fibre type-specific studies and enables time-sensitive assays where measurements need to be carried out in close connection with tissue sampling. By using THRIFTY, new insights into fibre type-specific muscle physiology can be gained which may have broad implications in health and disease.

Place, publisher, year, edition, pages
The physiological society, 2022
Keywords
MyHC, SDS-PAGE, fibre typing, high-throughput, immunofluorescence
National Category
Physiology
Research subject
Medicine/Technology
Identifiers
urn:nbn:se:gih:diva-7147 (URN)10.1113/JP282959 (DOI)000858344500001 ()36069036 (PubMedID)
Available from: 2022-10-10 Created: 2022-10-10 Last updated: 2022-12-06
Edman, S., Horwath, O., Andersson, A. & Apro, W. (2022). THRIFTY; A Novel Method For Rapid Fiber Type Identification Of Isolated Skeletal Muscle Fibers. In: Medicine & Science in Sports & Exercise 54(2022);Suppl. 2: . Paper presented at 2022 ACSM Annual Meeting & World Congresses, May 31 - June 4, San Diego, CA, USA (pp. 109-109). Lippincott Williams & Wilkins, 54(9), Article ID 457.
Open this publication in new window or tab >>THRIFTY; A Novel Method For Rapid Fiber Type Identification Of Isolated Skeletal Muscle Fibers
2022 (English)In: Medicine & Science in Sports & Exercise 54(2022);Suppl. 2, Lippincott Williams & Wilkins, 2022, Vol. 54, no 9, p. 109-109, article id 457Conference paper, Oral presentation with published abstract (Other academic)
Place, publisher, year, edition, pages
Lippincott Williams & Wilkins, 2022
National Category
Physiology
Research subject
Medicine/Technology
Identifiers
urn:nbn:se:gih:diva-7450 (URN)000888056600324 ()
Conference
2022 ACSM Annual Meeting & World Congresses, May 31 - June 4, San Diego, CA, USA
Available from: 2022-12-20 Created: 2022-12-20 Last updated: 2022-12-20
Valente-Silva, P., Cervenka, I., Ferreira, D. M., Correia, J. C., Edman, S., Horwath, O., . . . Ruas, J. L. (2021). Effects of Tryptophan Supplementation and Exercise on the Fate of Kynurenine Metabolites in Mice and Humans.. Metabolites, 11(8), Article ID 508.
Open this publication in new window or tab >>Effects of Tryptophan Supplementation and Exercise on the Fate of Kynurenine Metabolites in Mice and Humans.
Show others...
2021 (English)In: Metabolites, E-ISSN 2218-1989, Vol. 11, no 8, article id 508Article in journal (Refereed) Published
Abstract [en]

The kynurenine pathway of tryptophan (TRP) degradation (KP) generates metabolites with effects on metabolism, immunity, and mental health. Endurance exercise training can change KP metabolites by changing the levels of KP enzymes in skeletal muscle. This leads to a metabolite pattern that favors energy expenditure and an anti-inflammatory immune cell profile and reduces neurotoxic metabolites. Here, we aimed to understand if TRP supplementation in untrained vs. trained subjects affects KP metabolite levels and biological effects. Our data show that chronic TRP supplementation in mice increases all KP metabolites in circulation, and that exercise reduces the neurotoxic branch of the pathway. However, in addition to increasing wheel running, we did not observe other effects of TRP supplementation on training adaptations, energy metabolism or behavior in mice. A similar increase in KP metabolites was seen in trained vs. untrained human volunteers that took a TRP drink while performing a bout of aerobic exercise. With this acute TRP administration, TRP and KYN were higher in the trained vs. the untrained group. Considering the many biological effects of the KP, which can lead to beneficial or deleterious effects to health, our data encourage future studies of the crosstalk between TRP supplementation and physical exercise.

Keywords
behavior, dietary supplements, energy metabolism, exercise, kynurenine metabolites, skeletal muscle, tryptophan
National Category
Sport and Fitness Sciences
Research subject
Medicine/Technology
Identifiers
urn:nbn:se:gih:diva-6782 (URN)10.3390/metabo11080508 (DOI)000690525000001 ()34436450 (PubMedID)
Available from: 2021-08-30 Created: 2021-08-30 Last updated: 2024-09-04
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0003-2921-833x

Search in DiVA

Show all publications