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Abstract
Background: There is a lack of a methodological standard to process accelerom-
eter data to measures of physical activity, which impairs data quality and com-
parability. This study investigated the effect of different combinations of settings 
of multiple processing components, on the measure of physical activity and the 
association with measures of cardiometabolic health in an unselected population 
of middle-aged individuals.
Methods: Free-living hip accelerometer data, aerobic fitness, body mass 
index, HDL:total cholesterol ratio, blood glucose, and systolic blood pressure 
were achieved from 4391 participants 50–64 years old included in The Swedish 
CArdioPulmonary bioImage Study (SCAPIS) baseline measurement (cross-sec-
tional). Lab data were also included for calibration of accelerometers to provide 
comparable measure of physical activity intensity and time spent in different in-
tensity categories, as well as to enhance understanding. The accelerometer data 
processing components were hardware recalibration, frequency filtering, num-
ber of accelerometer axes, epoch length, wear time criterium, time composition 
(min/24 h vs. % of wear time). Partial least regression and ordinary least regres-
sion were used for the association analyses.
Results: The setting of frequency filter had the strongest effect on the physical 
activity intensity measure and time distribution in different intensity categories 
followed by epoch length and number of accelerometer axes. Wear time criterium 
and recalibration of accelerometer data were less important. The setting of fre-
quency filter and epoch length also showed consistent important effect on the as-
sociations with the different measures of cardiometabolic health, while the effect 
of recalibration, number of accelerometer axes, wear time criterium and expres-
sion of time composition was less consistent and less important. There was a large 
range in explained variance of the measures of cardiometabolic health depending 
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1  |  INTRODUCTION

The use of wearable devices to assess physical activity 
(PA) has expanded rapidly to replace self-report methods 
for more detailed and accurate data. Accelerometers are 
common wearable devices, worn at the hip, wrist or thigh, 
recording acceleration along three perpendicular axes.1,2 
The raw data are commonly processed in multiple steps 
to a continuous metrics representing PA intensity (e.g., 
counts, milligravity (mg)). This metrics can be calibrated 
to estimate energy expenditure and time spent in PA in-
tensity categories, for example, sedentary (SED), light PA 
(LPA), moderate PA (MPA), vigorous PA (VPA), very vig-
orous PA (VVPA).

However, data collected device-based does not auto-
matically improve accuracy, as multiple processing steps 
require multiple decisions, introducing measurement er-
rors.2 For example, previous research shows that the num-
ber of accelerometer axes,3–7 frequency filtering,8,9 epoch 
length,5,10–13 and wear time14,15 are processing steps (or 
components) where different settings (e.g., narrow filter vs. 
wider filter, short vs. long epoch length) affect the PA mea-
sure. Unfortunately, there is no uniform standard to pro-
cess accelerometer data, which hampers comparability.1,2

A uniform standard needs to be developed based on 
the simultaneous evaluation of the effect of multiple pro-
cessing components and settings on the PA metrics, and 
ideally also toward a reference measure to determine cri-
terion validity. In most cases, there is no suitable free-liv-
ing reference measure. Alternatively, the importance of 
the processing components and settings would be deter-
mined from prediction of health, that is, predictive valid-
ity. Still, their importance depends on the specific measure 
of health, reflecting certain aspects of PA, for example, 
volume (or energy expenditure) or intensity. Therefore, 
predictive validity should be determined with different 
measures of health. Previous research typically evaluated 
a single processing component, with or without associa-
tion to measures of health.

The aim of this study was to investigate the simulta-
neous effect of multiple accelerometer data processing 
components and settings on PA and the association with 
measures of cardiometabolic health in a large sample of 
middle-aged individuals. The goal is to provide a funda-
ment for a uniform standard for such a population.

2  |  METHODS

2.1 | Study overview

Free-living hip accelerometer data and measures of car-
diometabolic health from the Swedish CArdioPulmonary 
bioImage Study (SCAPIS) baseline measurement (cross-
sectional) together with lab data from the Measuring 
Energy expenditure and Diary intake at different Activity 
Levels (MEDAL) study were used to evaluate the effect on 
PA (Section 1) and associations with measures of cardio-
metabolic health (Section 2). Hip accelerometer data were 
processed to a continuous measure of PA intensity, which 
is commonly used in research.1 The hip placement is close 
to the center of mass and provides the best representation 
of the full body acceleration.16 Further, simple linear algo-
rithms predict energy expenditure from hip acceleration 
data with the same accuracy as more complex algorithms.17 
This study took its starting point from the ActiGraph ac-
celerometer and the processing steps affecting its metrics 
counts, as they are most commonly used in research.1

2.2 | Study samples

The SCAPIS is a multicenter cohort including 30 154 ran-
domly selected men and women aged 50–64 years from six 
regions in Sweden.18 Baseline recruitment and data col-
lection was performed in 2013–2018. Baseline data from 
6265 individuals in the Gothenburg region were used in 
the present study. SCAPIS was approved by the Ethical 

Hospital; Sahlgrenska University 
Hospital; Sweden´s Innovation agency; 
Swedish Heart-Lung Foundation; 
Swedish National Infrastructure for 
Computing (SNIC) at UPPMAX, 
partially funded by the Swedish 
Research Council; Swedish Research 
Council; Umeå University and 
University Hospital; University of 
Gothenburg; Uppsala University and 
University Hospital

on the combination of processing settings, for example, 12.1%–20.8% for aerobic 
fitness and 5.8%–14.0% for body mass index.
Conclusions: There was a large variation in the physical activity intensity 
measure and the association with different measures of cardiometabolic health 
depending on the combination of settings of accelerometer data processing com-
ponents. The results provide a fundament for a standard to process hip acceler-
ometer data to assess the physical activity in middle-aged populations.

K E Y W O R D S
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review board in Umeå (2021-228-31 M) and the present 
study by the Regional ethical board in Gothenburg (638-
16). All participants gave written informed consent. 
Complete data were achieved from 4391 participants. 
The Gothenburg region is described in Table 1 and com-
pared to the other regions in SCAPIS. Although statistical 
significance was reached in many of the comparisons, the 
differences were minor in most of the cases. The MEDAL 
study aims for methodological improvements of acceler-
ometry. Data were collected from 48 adults 18–40 years 
in a controlled lab setting and under free-living condi-
tions in 2021–2022. Participants were recruited trough 
announcements at the University of Gothenburg and at 
local sport clubs. Only lab data were used in the present 
study. The MEDAL study was approved by the Swedish 
Ethical Review Authority (2019-05316) and the partici-
pants gave written informed consent.

2.3 | Accelerometer data collected 
in SCAPIS

SCAPIS participants were instructed to wear the 
ActiGraph GT3X+, wGT3X+, or wGT3X-BT (3%, 15%, 
82%) accelerometer (ActiGraph) in an elastic belt over the 
right hip during seven consecutive days and to take it off 
during sleep and during water activities. The accelerom-
eters were initiated to collect data at a sampling rate of 
30 Hz (the preset sample rate) with an acceleration ampli-
tude range of ±6 g.

2.4 | Accelerometer and oxygen uptake 
data collected in MEDAL

The participants arrived to the lab in the morning in a 
fasting state not having performed any strenuous PA. 
The protocol consisted of 20 min resting in supine posi-
tion, and 4 min in each of the activities sit, stand, stand 
with manual work, walk 4 and 6 km/h, and run 9, 12 and 
15 km/h or until voluntary exhaustion. The participants 
were resting in the supine position 5 min before start 
of measurement while the equipment was prepared. 
Acceleration data were collected at the right hip with 
the Axivity AX3 accelerometer (Axivity Ltd., Newcastle 
upon Tyne) at a sampling rate of 100 Hz and with an 
acceleration amplitude of ±8 g.8,19 The raw data were re-
sampled at 30 Hz and truncated at 6 g to correspond to 
SCAPIS data.

Oxygen uptake data were collected with the Oxycon 
Pro (Jaeger, BD Corporation). Resting oxygen consump-
tion was calculated as the lowest 2-min mean oxygen 
consumption during the last 10 min of resting. Data 
collected from the last 2 min of each activity were used 
to calculate MET values by the quotient of total oxygen 
uptake and resting oxygen uptake. The MET values were 
used to calibrate processed accelerometer data. This 
calibration to a common scale was necessary in order 
to directly compare time composition and association 
with the measures of cardiometabolic health between 
processing components and settings, as the PA intensity 
measure is generated on different scales. The explained 

T A B L E  1  Characteristics of the Gothenburg region compared to the other five regions in SCAPIS.

SCAPIS total N = 26 264 variable
Study sample 
N = 5623

Region 
2 N = 3690

Region 
3 N = 4887

Region 
4 N = 5000

Region 
5 N = 4742

Region 
6 N = 2322

Age, years, mean (SD) 57.5 (4.3) 57.5 (4.3) 57.4 (4.3) 57.5 (4.4) 57.7 (4.4)* 57.5 (4.3)

Sex, % males 52.3 53.1 50.0* 50.0* 51.3 51.1

BMI, kg⋅m−2, mean (SD) 26.7 (4.3) 27.3 (4.5)*** 26.7 (4.3) 26.9 (4.4) 27.0 (4.3)* 27.1 (4.6)**

HDL:Chol ratio, mean (SD) 0.31 (0.10) 0.31 (0.10) 0.32 (0.10)*** 0.31 (0.09) 0.26 (0.07)*** 0.30 (0.09)**

Glucose, mmol⋅L−1, mean (SD) 5.7 (1.0) 5.9 (1.3)*** 5.7 (1.0) 5.8 (1.2) 5.9 (1.1)*** 5.5 (1.0)***

SBP, mmHg, mean (SD) 122 (17) 122 (16)** 127 (17)*** 133 (17)*** 125 (16)*** 126 (16)***

Wear time, min⋅day−1, mean (SD) 872 (101) 871 (97) 877 (98) 846 (74)*** 984 (164)*** 893 (97)***

Accepted days, days, mean (SD) 6.5 (1.1) 6.3 (1.2)*** 5.7 (1.3)*** 6.3 (1.0)*** 6.6 (0.9)*** 6.6 (0.9)***

SED, min⋅day−1, mean (SD) 469 (111) 464 (114)* 465 (113) 456 (96)*** 568 (158)*** 476 (108)

LPA, min⋅day−1, mean (SD) 348 (88) 354 (89)* 349 (88) 336 (82)*** 361 (87)*** 357 (85)***

MPA, min⋅day−1, mean (SD) 50 (26) 50 (28) 56 (29)*** 49 (26) 50 (26) 54 (28)***

VPA + VVPA, min⋅day−1, mean (SD) 4 (9) 3 (7)*** 5 (9) 4 (8) 4 (8) 4 (9)

Note: Processing component settings: No recalibration, triaxial, 0.29–1.63 Hz filter, 60 s epochs, 10 h wear time criterium, 24 h time composition (original 
settings in SCAPIS). Participants with complete data of all the variables compared were included (aerobic fitness was not compared), of the original total 
sample of N = 30 154. Original crude intensity categories used in SCAPIS (Sasaki et al 2011). ANOVA with Bonferroni post hoc test for continuous variables and 
chi-square for categorical variable. * = p < 0.05, ** = p < 0.01, *** p < 0.001 (comparison to study sample presented).
Abbreviations: Chol, total cholesterol; HDL, high-density lipoprotein; LPA, light physical activity; MPA, moderate physical activity; SBP, systolic blood 
pressure; VPA, vigorous physical activity; VVPA, very vigorous physical activity.
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variance (R2) of METs from the calibration was deter-
mined for the combination of processing component 
settings and used as an indication of criterion validity, 
that is, the ability to assess METs. This is relevant only 
for the first three processing steps presented below, 
that is, hardware recalibration, frequency filtering, and 
number of acceleration axes used. The combination of 
settings of these three processing steps reached an ex-
plained variance of METs between 88%–94%.

A spectrum of 36 PA intensity categories of 0.5 METs 
each was calibrated up to 18 METs using linear regres-
sion. Crude intensity categories were also calibrated. 
They were defined as SED (<1.5 METs), LPA (1.5- < 3.0 
METs), MPA (3.0- < 6.0 METs), VPA (6.0- < 9.0 METs), 
and VVPA (≥9.0 METs). Still, the crude intensity cate-
gories may hide important variations in PA and associa-
tions with measures of health.9,20 For example, MPA is a 
broad category that includes activities corresponding to 
walking slow (3–4 km/h) up to walking fast (6–7 km/h), 
where the associations to health at the lower intensi-
ties may be markedly different compared to the upper 
intensities.

2.5 | Accelerometer data processing

Figure 1 presents the processing steps from raw data to PA 
intensity and time spent in MET calibrated PA intensity 
categories applied to lab and free-living data. The raw data 
from each of the three axes (vertical, antero-posterior, 
medio-lateral) are bidirectional with positive and negative 
values.

The first step was to include hardware recalibration or 
not. Modern accelerometers are microelectromechanical 
system (MEMS) sensors with onboard firmware reduc-
ing loss of calibration. The assumption would be that re-
calibration is not required, although there are variations 
between units across activities and intensities.21,22 An 
unpublished observation indicated that the calibration 
could be lost.23 Inter-monitor variability contributes to 
random error which reduces the strength of association. 
For some processing methods, hardware recalibration 
is recommended, for example, Euclidean Norm Minus 
One (ENMO).24 Hardware recalibration was performed 
by an autocalibration method.24 Stationary periods were 
identified and the discrepancy between the vector mag-
nitude (VM) of these periods and the gravitational ac-
celeration (1 g) was minimized. VM was calculated as 

VM = 
√

(

vert2 + ant − post2 +med − lat2
)

. Robust cal-
ibration requires stationary periods from each of the 
three acceleration axes for several days,24 which was 
determined from on average 6–7 days free-living data in 

SCAPIS. Sufficient number of stationary periods from 
all three axes was achieved from all participants except 
one to perform the calibration with high quality.

The second step was to process accelerometer data 
to represent PA intensity. This was done either by ap-
plying a frequency filter8 or by the ENMO25 method. In 
this step, accelerometer data are turned into positive 
values. Four different filters were applied with an upper 
cut-off (low pass filter) at 1.63, 4 or 10 Hz, or without 
upper cut-point. As free-living data were collected with 
30 Hz sampling rate, a movement frequency of max-
imum 15 Hz can be captured according to the Nyquist 
theorem. All filters included a lower cut-off at 0.29 Hz 
to filter out gravity and low-frequency noise (high pass 
filter). The 0.29–1.63 Hz filter is applied when generat-
ing ActiGraph counts.26 After filtering, negative values 
were turned into positive by taking the absolute value. 
A dead-band at 68 mg was applied to attenuate acceler-
ation signals not representing movement.26 In addition, 
the 0.29–1.63 Hz filter included truncation to 2.13 g to be 
consistent with previous studies.26 ENMO was included 
as it represents a method without frequency filtering. 
However, it also applies an alternative way of turning 
accelerometer data into positive values.19,27 ENMO was 
applied by calculating the VM and subtracting gravita-
tional acceleration (1 g). Subsequently, negative values 
were truncated to zero.

The third step to produce the final PA intensity measure 
(mg) was to use either vertical or VM data. Older acceler-
ometers detected vertical acceleration only. Vertical accel-
eration is the major signal during ambulatory movement, 
but horizontal acceleration contributes to total accelera-
tion during running.28,29 ENMO was originally developed 
from triaxial data.25 Therefore, vertical data was not used 
with this method.

The fourth step was to aggregate the mg data into ep-
ochs by taking the mean mg of each epoch. Commonly 
used epoch lengths of 1, 3, 10 and 60 s were analyzed.1 
In the processing of accelerometer data, the information 
content is normally reduced from a sampling rate of 30–
100 Hz into epochs of 1–60 s. Shorter epochs capture varia-
tion in PA intensity better than longer epochs.5,10–13

The fifth step was to identify valid days by different 
wear time criteria. The settings used were 8, 10,12 or 14 h 
of wear time which are common in previous research.1 
The optimal wear time criterium is a compromise be-
tween the inclusion of sufficient amount of time and 
enough participants. Increasing the wear time criterium 
would reduce the number of valid days and the sam-
ple size. Non-wear-time was defined as at least 60 min 
of consecutive zeros with allowance of up to 2 min be-
tween 0 mg and the acceleration value corresponding to 
1.5 METs.30
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The sixth and final step was to apply the MET calibra-
tions developed from lab data to calculate the time composi-
tion in different intensity categories. The time composition 
may be expressed by 24 h (i.e., min/day) or by wear time 
(i.e., % of wear time). Either option may be biased. Some 
participants may achieve more time in, for example, MPA 
and VPA due to more wear time when the time composi-
tion is expressed by min/day, while other participants with 
less wear time may seem more physically active when the 
time composition is expressed as % of wear time as they 
wore the accelerometer mostly when doing PA.

2.6 | Cardiometabolic health

Five traditional measures of cardiometabolic health were 
used: aerobic fitness, body mass index (BMI), high den-
sity lipoprotein: total cholesterol ratio (HDL:Chol), blood 
glucose, and systolic blood pressure (SBP).18 Aerobic fit-
ness (ml·kg−1·min−1) was estimated from the Ekblom-
Bak two-point submaximal exercise test using validated 
algorithms covering the age range in SCAPIS.31 BMI 
was calculated as body weight/body height2 (kg⋅m−2). A 
100 mL venous blood sample was collected after an over-
night fast and used for analysis of HDL (mmol·L−1), total 
cholesterol (mmol·L−1) and plasma glucose (mmol·L−1). 
SBP (mmHg) was determined after 5 min at rest in su-
pine position with an automatic device (Omron M10-IT, 
Omron Health Care Co).

2.7 | Statistics

Vertical data are not used with ENMO, reducing the num-
ber of combinations of processing component settings 

from 640 to 576. Predictive validity was determined from 
the association between the PA intensity spectrum gen-
erated for the 576 combinations and the five measures 
of cardiometabolic health. As the 36 PA intensity spec-
trum categories can be collinear (in SCAPIS, correlation 
range 0.02–0.99, 6.8% r > 0.70, 1.7% r > 0.90), partial least 
square regression (PLS) was used.20 The PLS combines the 
spectrum categories into one or more latent variables to 
maximize the covariance with the measure of health. The 
number of latent variables in each PLS model was deter-
mined from cross-validation by Monte Carlo resampling 
with 1000 repetitions. A backward selection procedure 
with a cut-off of a quarter of a standard deviation was used 
to ensure that a model with more latent variables was sig-
nificantly better than using fewer latent variables. The op-
timal model would not include too many latent variables 
increasing the risk of being overfitted.32 Statistical signifi-
cance of the PLS model was determined by permutation 
tests with 104 repetitions. The strength of the PLS model 
for each of the 576 combinations is expressed by the ex-
plained variance (R2) of the measure of cardiometabolic 
health. The models were standardized for sex.20

The explained variance was thereafter used as outcome 
and the processing steps (components) as predictors in 
ordinary least square (OLS) regression for each measure 
of health. The six processing steps (Figure 1) were treated 
as categorial variables and their respective settings were 
transferred to dummy variables. The regression analyses 
were executed by excluding the reference setting for each 
processing component. The reference settings were no 
recalibration, vertical data, 0.29–1.63 Hz filter, 60-second 
epoch length, 8 h wear time, and 24 h time composition 
(min/day), respectively. They were selected based on their 
use in previous research.1 The result can be interpreted as 
the size and direction (positive or negative) of the effect 

F I G U R E  1  Processing of accelerometer data in six steps with different settings, from raw acceleration to the physical activity 
intensity measure and calibration to determine time spent in different intensity categories. Calculation of number of combinations of 
processing settings analyzed is presented. As ENMO does not use uniaxial data, the combinations of settings with uniaxial ENMO data (64 
combination) are withdrawn from the analyses.
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on the explained variance by changing from the reference 
setting to another setting. The standardized regression co-
efficients were used to make the effects comparable be-
tween processing components. The explained variances 
and the regression coefficients were used as indicators of 
predictive validity.

Finally, selectivity ratio plots were used to visualize the 
effect of the processing component settings on the pattern 
of the association between the PA intensity spectrum cate-
gories and the measures of cardiometabolic health.9,20 The 
selectivity ratio represents the contribution of each of the 
36 intensity spectrum categories to the association with 
the measure of health. 95% confidence interval was cal-
culated for each intensity spectrum variable by bootstrap-
ping with 104 repetitions. All data processing and statistics 
were performed in MATLAB 2020a (MathWorks). The 
MATLAB function ‘plsregress’ is available in the Statistics 
and Machine Learning Toolbox.

3  |  RESULTS

3.1 | Section 1: Physical activity 
(Figure 2, montage of multiple figures)

There was no systematic difference in METs between 
recalibrated and not recalibrated data, although some 

random variation in the difference occurred, more in ac-
celerometer data processed with the 0.29–1.63 Hz filter 
compared to the 0.29–10 Hz filter (Hardware calibration 
and frequency filtering). The mean (sd) calibration error 
before recalibration was 15.4 (33.7) mg and 3.9 (1.6) mg 
after recalibration.

The volume of acceleration frequencies during tread-
mill activity increased up to the peak at 3 Hz during the 
highest running speed, with additional signals frequen-
cies up to 15 Hz (frequency filtering). The frequencies up 
to 3 Hz correspond to step frequency. The 0.29–1.63 Hz 
filter started to attenuate the acceleration signals from its 
upper cut-point at 1.63 Hz and with higher magnitude as 
the signal frequency increased. Consequently, an import-
ant part of the acceleration information from most am-
bulatory movement is eliminated. Similar results were 
observed during free-living in SCAPIS. Due to the differ-
ent conditions of free-living compared to the strict tread-
mill protocol, the acceleration signal differs in frequency 
distribution. The volume of acceleration signal frequency 
is lower during free-living and peaks at 2 Hz. Further, 
the peak at 3 Hz corresponding to running is consider-
able smaller than from treadmill. ENMO also included 
acceleration signals of low frequencies as no frequency 
filter is applied. MET calibration for time distribution in 
intensity categories resulted in a distinct deviation of the 
0.29–1.63 Hz filtered data from the other frequency filters. 

F I G U R E  2  Effect of the different processing on the physical activity intensity measure. The montage visualizes the different 
components and settings in separate figures.
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ENMO contributed to the lowest amount of time distrib-
uted in PA of moderate and higher intensity.

Changing from vertical to VM data increased the PA in-
tensity output during treadmill walking and running, and 
required MET calibration on a different scale before in-
vestigating time distribution during free-living in SCAPIS 
(Axes and frequency filtering). Although VM data in-
creased the time being physically active during free-living, 
the size of the difference was small compared to expand-
ing the frequency filter.

Each reduction of the epoch length from 60 to 1 s in-
creased time spent in SED, MPA, VPA and VVPA and de-
creased time in LPA (epoch length). Increasing the wear 
time criterium from 8 h up to 14 h successively reduced 
the number of valid days in SCAPIS, with the sharpest de-
cline from 12 to 14 h (wear time). However, the wear time 
criterium had only minor effect on time distribution.

Finally, the size of the difference in time distribution of 
MET calibrated data among processing settings was com-
pared between processing components (all together). The 
largest difference between settings occurred for frequency 
filtering followed by epoch length and number of accel-
eration axes. The difference in time distribution between 
wear time settings and hardware recalibration settings 
was small.

3.2 | Section 2: Association with 
cardiometabolic health (Figure 3, 
montage of two figures)

Hardware recalibration and using VM data had gener-
ally minor positive effect on the explained variances (left 
figure). Specifically, recalibration with ENMO processing 
increased the explained variance between 0.02 (0.02) (glu-
cose) and 0.80 (0.78) (aerobic fitness) mean (sd) % units 
compared to without recalibration. This is larger com-
pared to the effect of recalibration with frequency filter-
ing processing, where the mean (sd) change in explained 
variance varied between 0.0001–0.11 (0.005–0.42) % units. 
For glucose, there was a large negative effect of using VM 
data.

Expanding the frequency filter from the reference set-
ting of 0.29–1.63 Hz had positive effect on the explained 
variance of all measures of cardiometabolic health, with 
large effect for aerobic fitness, HDL:Chol and SBP (left fig-
ure). However, a wider filter than 0.29–4 Hz did not con-
tribute to more explained variance and only the 0.29–4 Hz 
filter had positive effect for BMI. ENMO contributed little 
to improvement of the explained variance.

Reducing the epoch length had positive effect on ex-
plained variance of all measure of cardiometabolic health, 

but not to the same degree as expanding the frequency fil-
ter (left figure). An exception was for BMI, where epoch 
length was the main processing component with 1-second 
epoch as the strongest setting.

Changing wear time criterium had only small effect on 
the explained variance of the measures of cardiometabolic 
health, but for some of them there was a negative effect by 
increasing wear time (left figure). Expressing time com-
position by wear time (%) reduced the explained variance 
compared to expressing by 24 h, although the effect varied 
between the measures of cardiometabolic health.

The right figure presents the variation of the size of ex-
plained variance as well as the processing settings among 
the lowest respective highest explained variances. The 
specific combination of the processing settings had large 
effect on the size of explained variance. Further, the size 
of explained variance differed between the measures of 
cardiometabolic health, with the highest explained vari-
ance for aerobic fitness and lowest for SBP.

The prevalence of specific processing settings was in-
vestigated among the 20 combinations of settings contrib-
uting to the lowest respective highest explained variances 
(right figure). The recalibration setting was prevalent more 
often among the highest explained variances compared to 
the lowest explained variances, except for glucose. The op-
posite was observed for the VM setting, which was more 
prevalent among the highest explained variances for aer-
obic fitness only. While the 0.29–1.63 Hz filter and ENMO 
settings were more prevalent among the lowest explained 
variances, the 0.29–4 Hz or wider filter settings were more 
prevalent among the highest explained variances with the 
exception for BMI where the 0.29–1.63 Hz filter was the 
most prevalent setting. However, the later only occurred 
together with an epoch length of 1 s. The 1-second and 
3-second epoch lengths were the most prevalent epoch 
settings among the highest explained variances. Yet, the 
1-second and 3-second epochs were also the most preva-
lent epoch settings among the lowest explained variances 
of HDL:Chol and glucose but in combination with the 
0.29–1.63 Hz filter. For wear time, there was no clear prev-
alence pattern, while the 24 h time composition (min/day) 
was the most prevalent time composition setting among 
the highest explained variances.

Finally, the effect of the processing setting on the pat-
tern of the association was most evident for the frequency 
filtering component and aerobic fitness. This association 
pattern is presented here as an example (Figure 4) (all as-
sociation patterns are presented in supplement Figure S1–
S3). Using the narrow 0.29–1.63 Hz filter moves the 
explained variance to higher PA intensities compared to 
the other filters, which corresponds to the upward move 
of the time distribution presented in Section 1.
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8 |   ARVIDSSON et al.

4  |  DISCUSSION

The decisions on processing of hip accelerometer data had 
large effect on the PA intensity measure as well as on the 
association with measures of cardiometabolic health. The 
largest consistent effect was achieved when widening the 
frequency filter from 0.29–1.63 to 0.29–4 Hz, confirming 
the higher predictive validity of this processing setting. 
Widening the frequency filter further did not add more 

relevant information. In addition, reducing the epoch 
length from 60 s to less than 10 s contributed to impor-
tant changes in the time distribution of PA and improve-
ments in explained variance, confirming also the higher 
predictive validity of using shorter epochs. Although VM 
data would capture more information on PA than verti-
cal, it does not necessarily improve the association with 
cardiometabolic health. Wear time and time composi-
tion may have some effect on the PA and association with 

F I G U R E  3  Two complementary outcomes (left and right figures) of the association between physical activity intensity and measures of 
cardiometabolic health depending on the processing setting. The figures are used to indicate predictive validity of processing components 
and settings.

F I G U R E  4  Association pattern 
between physical activity intensity 
and aerobic fitness when using the 
0.29–1.63 Hz filter or the 0.29–10 Hz filter. 
Shadowed areas are 95% confidence 
intervals. Vertical dotted lines indicate 
crude intensity categories.
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cardiometabolic health, while minor effect would be ex-
pected from hardware recalibration.

The 0.29–1.63 Hz frequency filter, applied in the gener-
ation of the ActiGraph counts,26 is set too narrow to cap-
ture variation in movement intensities. Normal walking 
pace at 4 km·h−1 correspond to a step frequency of 1.7 Hz, 
fast walking at 6 km·h−1 to 2.4 Hz, jogging at 8 km·h−1 to 
2.6 Hz, and running at 12 km·h−1 to 2.8 Hz.29 Hence, a 
large proportion of the acceleration signal is eliminated 
already for walking. Widening the filter up to 4 Hz would 
capture most relevant acceleration signals generated in 
SCAPIS, as shown with the signal frequency distribution 
with a peak at 2 Hz and a smaller peak at 3 Hz that indi-
cates running (Figure 2, Frequency filtering). Still, captur-
ing acceleration signals with frequencies higher than 4 Hz 
may be important in other populations, such as children19 
or young adults including athletes.

The narrow 0.29–1.63 Hz filter impairs discrimina-
tion of acceleration signals generated at different PA 
intensities and increase the risk of misclassification of 
MET calibrated data.8 The misclassification can be in 
both directions, that is, both underestimation and over-
estimation. However, as more time is accumulated in 
MPA (minutes-hours) compared to VPA-VVPA (sec-
onds-minutes), more time is misclassified to higher 
intensities (MPA → VPA-VVPA) than the opposite (VPA-
VVPA→MPA). The consequence is the paradoxal result 
of more time being physically active using the 0.29–
1.63 Hz filter compared to wider filters in this and other 
studies.8,33 Previous research has shown that VPA may 
be required to increase HDL.34 As for aerobic fitness, the 
results herein show the importance of using a wider fre-
quency filter to capture higher PA intensities associated 
with more HDL (Figure 3).

ENMO processes accelerometer data without fre-
quency filter, which was evident from the frequency spec-
trum where low frequency noise was included (Figure 2, 
Frequency filtering). ENMO turns acceleration data into 
positive values by first subtracting the gravity component 
and thereafter zeroing all remaining negative values.24 
Unfortunately, the consequence is a differential measure-
ment error, as accelerometer data from individuals and 
activities generating larger acceleration amplitudes are at-
tenuated more than from individuals and activities relying 
on higher step frequency with smaller acceleration am-
plitudes. This effect was indicated when comparing chil-
dren (smaller amplitude) and adults (larger amplitude) in 
previous studies, where children generated higher values 
with ENMO19,27 compared to methods where all negative 
values are turned to positive.19 ENMO will increase the 
random error and reduce the explained variance with mea-
sures of health as shown in the present study (Figure 3). 
ENMO also exists as a high pass filtered version (0.2- Hz) 

and a band pass filtered version (0.2–15 Hz). These addi-
tions to ENMO had small effects on the explained vari-
ance of PA energy expenditure from the doubly labeled 
water method,25 and may not affect the predictive validity 
of cardiometabolic health. However, this remains to be 
evaluated.

The epoch length was the second most important 
processing component for the explained variance of 
the measures of cardiometabolic health. As in previous 
studies, with each reduction in epoch length the time in 
SED, MPA and VPA increased while LPA decreased.5,10–12 
Although, the effect on the strength of the associations 
was relatively small compared to frequency filtering, ex-
cept for BMI. In this case the epoch length was the most 
important processing mode and 1-second epochs contrib-
uted to the strongest associations. Shorter epochs seem 
to capture variation in PA related to energy expenditure 
and total body fat better than expanding the frequency 
filter in SCAPIS. However, previous studies have shown 
stronger associations with measures of health with lon-
ger epochs,10,11 which contrasts the results in the present 
study. In addition to different samples investigated, these 
studies processed the accelerometer data with the narrow 
ActiGraph filter. A wide epoch length together with a 
narrow frequency filter is a very restrictive combination 
of settings. This combination may separate individuals 
highly active in continuous PA (e.g., walking, running) 
even further from other individuals and the association 
with health appears even stronger, which may explain the 
contrasting results.

Vertical acceleration is the dominating acceleration 
axis during all ambulatory movement, while horizontal 
acceleration adds information during running.28,29 Using 
VM data compared to vertical data contributed to more PA 
being captured in this study (Figure 2, Axes and frequency 
filtering) as well as in other studies.4–6 As with shorter ep-
ochs, using VM data also contributes to higher proportion 
fulfilling the PA recommendations.4,5 However, VM data 
may not necessarily improve the explained variance of 
measures of cardiometabolic health as seen in the present 
study (Figure 3). In a study performed on the pilot sam-
ple to SCAPIS, VM data reduced the strength of the asso-
ciation between PA and the risk of metabolic syndrome 
compared to vertical data.6 The signal frequency pattern 
in the SCAPIS sample with the major peak at 2 Hz indi-
cates that most of the ambulatory movement is performed 
as walking, while the smaller peak at 3 Hz indicates a low 
proportion of running (Figure  2, Frequency filtering). 
Hence, vertical acceleration captures most relevant PA 
in SCAPIS, but VM data may add relevant information 
for the explained variance of aerobic fitness (due to run-
ning), as this was the only measure of cardiometabolic 
health where a positive effect was observed using VM data 
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10 |   ARVIDSSON et al.

(Figure 3). Hence, it seems that irrelevant noise may be 
captured with VM data.

Increasing the wear time criterium up to 14 h reduced 
the number of valid days and the explained variance of 
aerobic fitness, BMI, HDL:Chol, and SBP but not for glu-
cose, although the effects were small (Figure 3). In a pre-
vious study, the slope of the association between MVPA 
and body fat percentage decreased when increasing wear 
time criterium.14 Expressing the time composition by 24 h 
(i.e., min·day−1) or by wear time (i.e., %) varies largely be-
tween studies. In the present study, expressing by wear 
time reduced the explained variance of all measures of 
cardiometabolic health compared to expressing by 24 h, 
but the effect was only minor for some of the measures. 
Hence, these two processing components may be of some 
importance. A wear time of 10 h and expressing the PA 
by 24 h may be useful decisions for SCAPIS and similar 
populations, when the accelerometer is taken off during 
sleep.

Finally, it seems that recalibration of the .gt3x files 
from the ActiGraph accelerometer is not required, as 
there was only a minor effect on the PA intensity mea-
sure and the explained variance of cardiometabolic health 
(Figure  2, Hardware calibration and frequency filtering, 
and Figure 3). Previous studies have confirmed high in-
traclass correlation of the ActiGraph GT3X+ acceler-
ometer used in SCAPIS.21,22 Still, it may be important to 
check the data after firmware updates. An interesting 
observation was the distinct pattern of larger individual 
variation of the difference between recalibrated and not 
recalibrated data for the 0.29–1.63 Hz filter compared to 
the wider 0.29–10 Hz filter (Figure  2, Hardware calibra-
tion and frequency filtering). Hence, there may be addi-
tional random error with a narrow frequency filter due to 
the calibration status of the accelerometers. Recalibration 
is recommended for ENMO.24 Frequency filtering would 
attenuate the effect of recalibration.24 ENMO does not use 
frequency filtering but subtracts the gravity component 
as part of the acceleration data processing. This likely 
explains why there was a larger effect of recalibration 
on the association with the measures of cardiometabolic 
health for ENMO compared when including frequency 
filtering, even if the effect was small. Consequently, the 
contribution of hardware recalibration may depend on 
what metrics used. The ActiGraph  .gt3x files used in this 
study demonstrated a calibration offset of 15.4 mg and a 
standard deviation of 33.7 mg. With the application of a 
bandpass filter of 0.29–4 Hz, recalibration would be of no 
importance. However, we cannot draw conclusions about 
the importance of recalibration of other accelerometer 
brands.

Based on the results from this study, we propose 
standard settings for the six processing components 

investigated to promote high data quality and compara-
bility between studies (Figure 5). This standard is primar-
ily applicable to hip accelerometer data collected with the 
ActiGraph GT3X accelerometer during daytime in mid-
dle-aged populations, to generate the continuous measure 
of PA intensity.8,9,19,26 Similar investigations are encour-
aged in other populations and with other measures of 
health. In order to further develop a methodological stan-
dard to process hip accelerometer data, other accelerome-
ter processing and metrics would be compared. Still, this 
need to be performed in a stepwise and logical manner to 
not mixture the complexity of different combinations of 
processing which would otherwise interfere with interpre-
tation and understanding.

4.1 | Strength and weaknesses

This is the first study to investigate the effect of multiple 
accelerometer data processing components on PA and the 
association with measures of cardiometabolic health in a 
large, unselected cohort. Statistics were used to consider 
collinearity between the large number of PA intensity 
categories investigated. The comprehensive analyses of 
the associations with the different measures of cardio-
metabolic health allowed determination of the predic-
tive validity of the settings included. Still, there are other 
processing components and accelerometer metrics not 
included in this study. For example, the settings of non-
wear time have been investigated in previous research. As 
the non-wear time setting affects the sedentary part of the 
PA intensity spectrum30 and this part has only weak as-
sociation with the measures of cardiometabolic health in 
SCAPIS when performing PLS regression, it was expected 
to be of little relevance in this study. Other metrics used 
in research to include for comparison to could be, for ex-
ample, MAD,35 Activity Index,36 and MIMS.37 Further, the 
results cannot be directly applicable to other accelerom-
eter brands than the ActiGraph accelerometer. Previous 
research has shown that different accelerometer brands 
do not always generate equal output when applying the 
same processing even if the differences can be considered 
small.26,35

The results are only applicable to the five measures 
of cardiometabolic health investigated. They cannot 
directly be applied to other populations with different 
PA patterns, although the fundamental principles are 
still valid. Finally, this study determined the predictive 
validity of the different combinations of accelerometer 
data processing settings and not the criterion validity. 
In the latter, a free-living criterion would be required 
and the doubly labeled water method would provide 
a criterion measure, although it is energy expenditure 
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and not a measure of movement. Information about 
the criterion validity is of importance when the PA be-
havior or change in PA behavior is of interest per se, 
for example, to determine the volume of PA to increase 
energy expenditure to lose body fat. The MET calibra-
tions performed in this study could be used to assess 
free-living energy expenditure. The explained variance 
of METs was generally very high. Still, free-living crite-
rion validation with the doubly labeled water method 
would be required, which was not available for this 
study. Information about both criterion and predictive 
validity would be optimal to draw conclusions about the 
importance of the different accelerometer data process-
ing components and settings.

5  |  CONCLUSIONS

Accelerometry is more objective than self-report when it 
comes to data collection. However, several decisions on ac-
celerometer data processing must be made and have large 
effect on the time distribution of PA and the association 
with measures of health. The results of the present study 
provide the fundament for a methodological standard of 
settings when processing hip accelerometer data collected 
during daytime to a continuous measure of PA intensity 
in middle-aged populations. The implementation of this 
standard would improve quality and comparability in epi-
demiological and clinical research. Future studies would 

target other populations, measures of health, but also 
other PA metrics.
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PERSPECTIVES
A methodological standard to process accelerometer 
data is important for quality and comparability between 
studies. This cross-sectional study investigated multiple 
components of processing hip accelerometer data to a 
physical activity intensity metrics in middle-aged individ-
uals. Frequency filtering and epoch length had large effect 
on the distribution of physical activity intensity and asso-
ciation with different measures of cardiometabolic health, 
while hardware recalibration, number of acceleration 
axes, wear time criterium, and time composition meas-
ure (minutes vs. %) were less important. The proposed 
standard to process hip accelerometer data therefore in-
cludes specific settings for frequency filtering and epoch 
length to capture the association between physical activity 
intensity and cardiometabolic health in middle-aged in-
dividuals. The standard is more flexible to the settings of 
the other processing components investigated due to their 
minor influence.
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