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Abstract: Weak electromagnetic fields (WEF) alter Ca2+ handling in skeletal muscle myotubes. Owing
to the involvement of Ca2+ in muscle development, we investigated whether WEF affects fusion
of myoblasts in culture. Rat primary myoblast cultures were exposed to WEF (1.75 µT, 16 Hz) for
up to six days. Under control conditions, cell fusion and creatine kinase (CK) activity increased in
parallel and peaked at 4–6 days. WEF enhanced the extent of fusion after one and two days (by ~40%)
vs. control, but not thereafter. Exposure to WEF also enhanced CK activity after two days (almost
four-fold), but not afterwards. Incorporation of 3H-thymidine into DNA was enhanced by one-day
exposure to WEF (~40%), indicating increased cell replication. Using the potentiometric fluorescent
dye di-8-ANEPPS, we found that exposure of cells to 150 mM KCl resulted in depolarization of
the cell membrane. However, prior exposure of cells to WEF for one day followed by addition
of KCl resulted in hyperpolarization of the cell membrane. Acute exposure of cells to WEF also
resulted in hyperpolarization of the cell membrane. Twenty-four hour incubation of myoblasts
with gambogic acid, an inhibitor of the inward rectifying K+ channel 2.1 (Kir2.1), did not affect cell
fusion, WEF-mediated acceleration of fusion or hyperpolarization. These data demonstrate that
WEF accelerates fusion of myoblasts, resulting in myotube formation. The WEF effect is associated
with hyperpolarization but WEF does not appear to mediate its effects on fusion by activating
Kir2.1 channels.

Keywords: creatine kinase; differentiation; fusion; myoblasts; myotubes; weak electromagnetic fields

1. Introduction

Living organisms are continuously exposed to weak electromagnetic fields (WEF)
that can result in multiple biological consequences. For example, WEF can alter Ca2+

handling in various cell types, including cells of the immune system, stem cells, osteocytes,
cardiomyocytes, and neurons [1–5]. Recently, we showed that WEF inhibits action potential
and hypoxia-mediated increases in intracellular Ca2+ concentration ([Ca2+]i) and protects
against muscle damage induced by hypoxia in rat primary skeletal muscle cultures [6].
Similar findings were subsequently observed in cultured cardiomyocytes [7].

That Ca2+ is involved in myogenesis in vitro was established 50 years [8]. Specifically,
Ca2+ has been implicated in fusion and differentiation of myoblasts [8,9] and this has
been subsequently confirmed in various laboratories [10–17]. It has been suggested that
Ca2+ influx is indispensable for fusion and that, at least in human myoblasts, this occurs
via T-type Ca2+ channels that open subsequent to membrane hyperpolarization [14]. The
hyperpolarization appears to be dependent on activation of several different types of K+

channels [14]. Whether WEF affects muscle development, however, is not known. In view
of our earlier findings that WEF altered Ca2+ handling [6], it appeared likely that muscle
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growth would also be affected by WEF. Therefore, we examined the effects of WEF on
the fusion of skeletal muscle myoblasts in culture. The results demonstrate that WEF
accelerates myoblast fusion, resulting in myotube formation.

2. Results
2.1. WEF Accelerates Fusion

Fusion of myoblasts increased continuously, resulting in a value of ~60% of nuclei
in myotubes by day 6 (Figure 1C), which is consistent with previous studies using this
model [9]. CK activity increased in a parallel fashion (Figure 1D), which reflects gene
activation during differentiation [18]. Exposure of cells to WEF enhanced the extent of
fusion by ~40% after the first 2 d of treatment, but not thereafter (Figure 1A–C). WEF also
resulted in increased CK activity after 2 d exposure to WEF, but not thereafter (Figure 1D).
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Figure 1. Effect of WEF on myoblast differentiation. Muscle cultures were either untreated (control) or exposed to WEF
for up to six days. (A). Representative cell morphology using phase contrast microscopy for cells grown under control
conditions for 1 day and (B). during exposure to WEF for one day (bar = 100 µm). (C). Presence of nuclei in myotubes over
time in control (2) and during exposure to WEF (�). Values are mean ± SE for 13–23 dishes (except for 6 days where only
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2.2. Ca2+ Is Required for Fusion

To examine if extracellular Ca2+ was required for WEF to exert its effects on myoblast
fusion, cells were treated with EGTA. Addition of EGTA to culture medium prevented
fusion of the cells (Figure 2A), which is consisted with earlier findings demonstrating that
EGTA inhibits muscle cell fusion but does not affect viability [19]. Exposure of cells treated
with EGTA to WEF did not enhance fusion, indicating that extracellular Ca2+ was required
for fusion both in the absence and presence of WEF.
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Figure 2. Effect of EGTA on myoblast differentiation and WEF on thymidine incorporation. (A) Presence of nuclei in
myotubes in absence (Control) or presence of EGTA (1.8 mM), or EGTA + WEF for 24 h. In this series, experiments began
40 rather than 48 h after plating. Values are mean ± range for 3 dishes. *** p < 0.001 vs. Control. (B) Cells were grown with
3H-thymidine under control conditions for 24 h (2) or exposed to WEF for 24 h (�). Values are mean ± SE for seven dishes.
*** p < 0.001 between groups.

2.3. WEF Enhances Cell Replication

DNA synthesis, which reflects cell replication, occurs primarily during the initial 48 h
of incubation, decreases sharply after 48 h, and does not require significant concentrations
of extracellular Ca2+ [8]. We, therefore, examined whether WEF also affects this process
by following the incorporation of 3H-thymidine into TCA-precipitates. Indeed, WEF
significantly increased DNA synthesis, reflecting enhanced cell replication (Figure 2B).

2.4. WEF Causes Membrane Hyperpolarization

Since membrane hyperpolarization has been implicated in myoblast fusion [13,14],
we investigated whether WEF affected membrane potential. Earlier it was shown that di-8-
ANEPPS fluorescence changed in response to changes in voltage across the cell membrane
(decreased fluorescence reflects a decrease in membrane potential, and vice versa) [20].
As an increase in extracellular KCl causes membrane depolarization, we first confirmed
that di-8-ANEPPS documents such an event under our conditions of study. Indeed, by
using di-8-ANEPPS, a membrane potential increase (i.e., depolarization) was observed
in response to administration of KCl (Figure 3A). However, in the presence of chronic
exposure to WEF, addition of KCl resulted in hyperpolarization (Figure 3B). To examine
the direct effects of WEF on membrane potential, cells that were exposed to WEF for 24 h
were loaded with di-8-ANEPPS for 3 min. After a stabilization period of 10 min, cells were
again exposed to WEF for 20 min. WEF induced hyperpolarization that became apparent
within several min (Figure 3C). The mean values for these experiments are summarized in
Figure 3D.
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Figure 3. Effect of WEF on membrane potential of myotubes. Cells loaded with di-8-ANEPPS for 3 min were washed and
followed for 3–30 min. (A). Representative trace of a control cell exposed to KCl (150 mM) at the time indicated (dashed
line). Downward deflection represents depolarization. (B). Representative trace of cell exposed to WEF for 24 h, followed by
interruption of ~10 min (for loading with di-8-ANEPPS and focusing in microscope), and then again exposed to WEF before
addition of KCl at the time indicated (dashed line). Upward deflection represents hyperpolarization. (C). Representative
trace of cell exposed to WEF for 24 h, followed by interruption of ~20 min (for loading with di-8-ANEPPS, focusing in
microscope, and allowing for stabilization of baseline), before exposing to WEF as indicated (dashed line). (D). Mean ± SE
values for 75 (KCl), 53 (KCl + WEF 24 h) and 7 (WEF acute) cells. *** p < 0.001 vs. 0.

2.5. WEF Does Not Activate Kir2.1 Channels

Previous studies demonstrated that myoblast fusion and differentiation were depen-
dent on hyperpolarization that was due to increased expression and activity of Kir2.1
channels [12–14,21]. To investigate the role of Kir2.1 channels in WEF-dependent hyperpo-
larization, GA, a potent inhibitor of the Kir2.1 channel (inhibitory constant, IC50 of 27 nM),
was used [22,23]. Exposure of cells to 200 nM GA for 25 h did not affect myoblast fusion
either in the absence or presence of 24 h exposure to WEF (data not shown). To assess the
bioactivity of GA, experiments with membrane potential were also performed. Prolonged
exposure to GA (25 h) did not affect KCl-mediated membrane depolarization (Figure 4A).
As KCl-mediated depolarization likely occurs due to slowing of K+ efflux via leak chan-
nels [24], these results indicate that GA does not affect the K+ leak channels. Indeed, under
the conditions studied, GA does not inhibit other K+ channels, including Kv2.1, hERG or
Kir1.1 channels [23]. Following 24 h exposure to WEF, addition of KCl (while cells were
still being exposed to WEF) resulted in hyperpolarization (as in Figure 3B) and this, too,
was not affected by 1 h exposure to GA (Figure 4B). However, following 25 h exposure
to GA and 24 h exposure to WEF, addition of KCl resulted in a transient, blunted degree
of hyperpolarization (Figure 4C), indicating that the drug was biologically active. Data
from this series are summarized in Figure 4D. Finally, prolonged exposure to GA did not
block hyperpolarization induced by acute exposure to WEF (Figure 5). This suggests that
WEF-mediated hyperpolarization does not derive from activated Kir2.1 channels.
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3. Discussion

Many epidemiological associations between electromagnetic fields and disease have
been reported, but the causality of the relationships is generally not supported by knowl-
edge of known mechanisms [25]. Still there are numerous reports of positive effects of
electromagnetic fields on musculo-skeletal disorders as reviewed earlier [26]. More recently,
beneficial effects of electric fields on wound healing and tissue regeneration have been
documented [27]. Finally, there is now considerable evidence for synergistic effects of
pharmacological compounds and WEF on neural functions [28]. It follows that understand-
ing the mechanisms whereby WEF affects biological functions is paramount for optimal
application of electric fields in human health.

In the present study we investigated the effects of WEF on muscle growth and ex-
amined potential mechanisms of action. The major findings are that: (1) WEF accelerates
fusion of myoblasts; (2) WEF induces membrane hyperpolarization and cell proliferation;
and (3) membrane hyperpolarization via Kir2.1 channel is not a prerequisite for WEF to
exert its effect during the initial stages of muscle growth.

The finding that WEF increased the extent of fusion during the initial 48 h of treatment,
but not thereafter, suggests that it accelerated the activity of an inherent process, rather
than activated a separate mechanism of action. Often, prior to fusion, myoblasts replicate
and migrate [29]. Subsequently, fusion involves cell adhesion, hyperpolarization and
activation of signal transduction [13,14,30]. Cell division occurs initially and upon reaching
an optimal cell density fusion follows [29]. Thus, WEF may incur its positive effects on
fusion by accelerating any of the above processes. We examined the effects of WEF on both
cell replication and membrane hyperpolarization. Indeed both were increased and could
be involved in the enhancement of fusion during the initial stages of myogenesis. In this
context, it is of interest that the extent of cell replication and fusion were both ~40%.

We hypothesized that WEF exerted its effects on fusion by enhancing K+ efflux via
Kir2.1 channels, which will result in hyperpolarization. This was based on the observation
that studies on human myoblasts demonstrated that there is a rapid increase in the expres-
sion of Kir2.1 during the initial 24 h of culture that is associated with hyperpolarization,
followed by fusion [12–14,21]. Blocking the Kir2.1 current inhibited fusion [14,21]. The fact
that exposure to WEF caused hyperpolarization within several minutes suggested that the
Kir2.1 channel explanation was plausible. However, usage of GA under conditions that
should fully inhibit function of the Kir2.1 did not affect the fusion induced by WEF. There-
fore, the results did not support involvement of the latter channels in the WEF-mediated
enhancement of fusion. Our results, however, are consistent with an important role of
hyperpolarization in WEF-mediated enhancement of fusion of myoblasts.

Previously we showed that WEF abolished action-potential mediated Ca2+ transients,
but we could not determine whether this occurred because of inhibition of dihydropyridine
receptors or inhibition of membrane depolarization [6]. The observation that KCl-mediated
depolarization was blocked (and even reversed) by prolonged exposure to WEF in the
present study indicates that WEF inhibits action-potential mediated Ca2+ transients by
inhibiting membrane depolarization. Nevertheless, the link between muscle growth, WEF
and Ca2+ handling is not fully understood. Significant extracellular Ca2+ (1400 µM) is
requisite for fusion of myoblasts [8], as well as to observe the enhancing effect of WEF on
fusion (present findings). In contrast, a number of metabolic processes associated with
growth/replication, including DNA, RNA and protein synthesis are essentially normal
in medium containing a Ca2+ concentration of only 70 µM [8]. WEF also enhanced DNA
synthesis/cell replication in the presence of high extracellular Ca2+ (1.8 mM). However,
it is not known whether the WEF effect on replication also occurs at a low extracellular
Ca2+ concentration.

In conclusion, WEF enhances myoblast replication and fusion. The effect of WEF on
fusion requires high extracellular Ca2+, is associated with hyperpolarization, but WEF does
not involve functional Kir2.1 channels. Considering the number of positive applications
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of electromagnetic fields in human health [26,27], WEF may prove useful in accelerating
skeletal muscle regeneration following acute trauma.

4. Materials and Methods
4.1. Animals and Materials

Sprague-Dawley rat pups (1–2 days of age) were purchased from Envigo, Jerusalem,
Israel. The pups were killed by decapitation and skeletal muscles were dissected from the
thigh for subsequent preparation (see below). All experiments were conducted according
to the guidelines of the National Institutes of Health for the care and use of laboratory
animals and approved by the institutional review board of Bar-Ilan University (Ethical
number 98-12-2014).

All chemicals were from Sigma-Aldrich unless stated otherwise. 3H-thymidine was
from Perkin-Elmer (Waltham, MA, USA). Polyclonal antibody against an extracellular
epitope of the inward rectifying K+ channel 2.1 (Kir2.1) was purchased from Alomone Labs
(#APC-159, Jerusalem, Israel). Gambogic acid (GA) was purchased from Abcam (ab145183,
Cambridge, UK). The potentiometric fluorescent dye, di-8-ANEPPS, was purchased from
Biotium (#61014, Fremont, CA, USA).

4.2. Experimental

We studied primary rat muscle cell cultures, a model that is well established in our
laboratory. These cells are more likely to exhibit properties resembling those in vivo, as
opposed to muscle cell lines that may display variations in genotype and phenotype during
serial passages. Muscle cultures were prepared as described previously [9]. Briefly, skeletal
muscle was removed under sterile conditions and washed three times with phosphate-
buffered saline (PBS) to remove excess blood. PBS consisted of (in mM) the following:
NaCl 135, KCl 3.7, Na2HPO4 10, KH2PO4 1.8, MgCl2 0.5, CaCl2 0.9, yielding a pH of 7.3.
Muscles were minced finely and gently agitated in PBS containing 0.25% trypsin, for a few
cycles of 10 min each, which resulted in the release of single cells. The suspension was
then centrifuged for 5 min at 500× g at room temperature. The supernatant was discarded
and cells were re-suspended in Dulbecco’s Modified Eagle Medium (DMEM) containing
25 mM glucose and supplemented with 10% heat-inactivated horse serum and 2% chick
embryo extract. The cell suspension was diluted in the same medium to 1.2 × 106 cells/mL
and 1.5 mL of cells was then plated in 35 mm collagen/gelatin coated plastic culture dishes
or cover glasses. Cultures were incubated in a humidified atmosphere of air with 5% CO2
at 37 ◦C. Growth medium was changed after 24 h. Thereafter medium was changed every
72 h. Interventions began 48 h after plating. Thus, all treatment durations reported refer
to those after the initial 48 h after plating, unless stated otherwise. Cells were exposed
to WEF (1.75 µT, 16 Hz, 5 V), generated by a stimulator connected to a copper wire coil
with a single wrapping around the culture dish in the incubator (or inverted microscope—
see below) for the durations indicated (see Results). This field strength and frequency
was chosen since they were found to be optimal for studying the effect of WEF on Ca2+

handling [6]. Additional details are available elsewhere [6]. In one series of experiments
1.8 mM EGTA was added to the culture dishes to chelate extracellular Ca2+. In another
series, KCl (final concentration 150 mM) was added to induce membrane depolarization.
The extracellular cell recording solution was composed of (in mM): 150 NaCl, 5 KCl,
2 CaCl2, 1 MgCl2, 5 HEPES, 20 glucose, and pH was adjusted to 7.4. Depolarization cell
recording solution (high K+ concentration) was injected at a constant rate and consisted of
(in mM): 150 KCl, 2 CaCl2, 1 MgCl2, 5 HEPES, 25 glucose, 2 NaCl, and pH was adjusted to
7.4. The measured osmolarity for the two solutions ranged from 322–328 mOsm/L and
was adjusted with sucrose.

To assess membrane potential changes resulting from exposure to WEF, we used di-8-
ANEPPS, a voltage sensitive fluorescent dye. The microscope set-up for the measurement
of changes in membrane potential experiments consisted of an Olympus IX83 inverted
microscope equipped with a LED lamp (SPECTRA X, Lumencor Inc., Beaverton, OR, USA).
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The culture was excited at 480 nm and the emitted light of the di-8-ANEPPS dye was
collected by a 40× objective lens and passed through a 505 nm long-pass dichroic mirror
and a 510 nm longpass emission filter. Imaging was performed with an electron multiply
charge coupled device (EMCCD, Andor iXon, South Windsor, CT, USA). Cells were loaded
with di-8-ANEPPS (5 µM in 1% DMSO and medium) for 3 min and washed three times.
Thereafter, cells were treated as indicated (see Results). Frames were captured every 5 s for
3 min following interventions (for baseline experiments, frames were captured every 5 s
for 30 min). Results are derived from three separate cell culture preparations generated at
intervals of at least 3 separate days, with three plates for each experiment, unless stated
otherwise. For obtaining images of several cells in the same plate, 2–4 cells were followed
from each plate on the same frame recording under the same conditions. Additionally,
three different regions were sampled from each cell to ensure that the same trajectories
were obtained.

Changes in the fluorescence of di-8-ANEPPS upon chemical polarization (in percent)
were calculated by subtracting the baseline mean intensity in the relevant region of interest
from maximal measured mean intensity of the same region ((∆F/F) × 100). We established
that changes in fluorescence corresponded to changes in membrane potential by performing
patch clamp experiments on primary cultured neurons. Holding potentials varied between
−60 to +60 mV using 20 mV steps (step duration was 200 ms over a period of 42 s). Under
these conditions di-8-ANEPPS exhibited a voltage sensitivity of 5 + 1% ((∆F/F) × 100) per
120 mV, with a response time of 10 ms (data not shown). Earlier studies have established a
di-8-ANNEPS voltage sensitivity of ~15% per 100 mV in skeletal muscle cells [31]. Results
that were exceptional were excluded and not considered in statistical calculations. The
trajectories graphs presented are representative results and not means.

4.3. Analyses

For measuring creatine kinase (CK) activity, cells were washed twice with PBS and then
scraped in 1 mL of ice cold PBS. The mixture was sonicated (10 s) on ice and centrifuged
at 4 ◦C for 10 min at 3000× g. Twenty-five µL of supernatant were assayed for CK with
a spectrophotometric method following the production of NADPH using a CK/NAC kit
(Thermo Scientific, TR 14010, Waltham, MA, USA). Protein in supernatant was analyzed
with the Bio-Rad assay (Hercules, CA, USA). To assess cell replication, cells were incubated
with 3H-thymidine (1 µCi/mL medium) for 24 h. Thereafter, cells were washed 5 times
with ice-cold PBS, scraped in 0.5 mL of PBS and sonicated (10 s). A total of 0.5 mL of
ice-cold 10% TCA was added to the homogenate and the mixture was incubated on ice for
15 min, followed by 10 min of centrifugation at 3000× g. The supernatant was discarded
and soluene was added to solubilize the pellet. The latter was transferred to 4 mL of
scintillation cocktail (Ultima Gold, Merck, Germany) and counted for radioactivity.

Cell fusion was assessed by counting the number of nuclei (≥3, stained with Giemsa)
within myotubes divided by the total number of nuclei counted in the microscope field
(objectives of 40× or 20×) and the values were expressed in % of total. Nine different fields
were chosen randomly for counting and the mean was calculated as representative for
a dish.

4.4. Statistical

Values are presented as mean ± SE, unless stated otherwise. Statistically significant
differences (p < 0.05) between two means were calculated with unpaired t-tests and for
more than two means (Figure 2) with a one-way ANOVA, followed by an LSD post-hoc test.
Use of ANOVA was based on the observation that skewness statistics indicated a normal
distribution. Changes within a cell were calculated with paired t-tests (Figures 3 and 4).
The results are derived from ≥3 separate experiments (i.e., three separate cell preparations
on three separate days) unless stated otherwise.
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