Plyometrisk träning för orienterare

- En kvantitativ interventionsstudie gällande träningsunderlagets påverkan på löpekonomi

Lina Nilsson
Sammanfattning

Syfte och frågeställningar
Syftet med denna studie var att undersöka om underlaget vid plyometrisk styrketräning påverkade löpekonomin hos orienterare vid varierande underlag. De frågeställningarna som var till hjälp för att uppfylla syftet var: (1) Ger plyometrisk träning på mjukt underlag bättre löpekonomi hos orienterare vid löpning i terräng? (2) Är effekten på löpekonomin specifik för det underlag plyometrin har tränats på? (3) Hur påverkas löpdynamiska parametrar av plyometrisk träning på olika underlag?

Metod
27 orienterare deltog initialt i studien, varav 19 fullföljde den fem veckor långa interventionen. 11 av dessa var kvinnor (ålder: 22,27 ± 1,93 år, vikt: 56,72 ± 1,13 kg) och 8 av dem män (ålder: 19,25 ± 1,63 år, vikt: 67,01 ± 2,48 kg) (medel ± standard error of the mean). Förökspersonerna delades in i grupper för träning på hårt respektive mjukt underlag baserat på kön, ålder, föreningstillhörighet samt testresultat från förtesterna. Grupperna tärnade, utöver aerob träning, två plyometriska pass per vecka innehållande sju övningar. Träningssunderlagen var gymnastiksalsgolv respektive en sex cm tjock mjuk matta. Studien inleddes och avslutades med fälttester bestående av submaximal och maximal löpning på stig och i obanad terräng, där mätningar av VO$_{2max}$, löpekonomi, laktat, hjärtfrekvens och löpdynamik utfördes.

Resultat
Signifikant förbättrade resultat gällande löpekonomi visades för gruppen som tränat på hårt underlag vid löpning i obanad terräng (-4,98 %, p = 0,03). Båda grupperna försämrade sitt VO$_{2max}$ (p = 0,0002, p = 0,005). Löpdynamikmätningen visade endast signifikant resultat för gruppen på mjukt underlag gällande lägre vertikalförflyttning på stig (p = 0,01). En positiv korrelation visades mellan förändring i löpekonomi på stig och förändring i tid på prestationstestet (p = 0,004).

Slutsats
Plyometrisk träning på hårt underlag gav bättre löpekonomi vid obanad terränglöpning, samt tenderade ge bättre löpekonomi på stig. Det mjuka underlaget vid träning gav ingen effekt på löpekonomin vid stig- eller skogslöpning. Löpdynamiken påverkades inte nämnvärt av den plyometriska träningen då endast 1 av 18 statistiska analyser visade signifikant resultat.
Innehållsförteckning

1 Inledning ... 1
 1.1 Introduktion ... 1
 1.2 Bakgrund .. 2
 1.2.1 Förutsättningar för prestation ... 2
 1.2.3 Löpekonomi ... 3
 1.2.4 Orientering vs. loppning .. 6
 1.2.5 Plyometrisk styrketräning ... 7
 1.3 Forskningsläge .. 8
 1.4 Syfte och frågeställningar ... 9

2 Metod .. 9
 2.1 Försökspersoner ... 9
 2.1.1 Bortfallsanalys .. 10
 2.2 Studiens utformning ... 10
 2.3 Material .. 11
 2.4 För- och eftertest ... 12
 2.5 Träningsintervention – Plyometrisk styrketräning 14
 2.6 Validitet och reliabilitet ... 15
 2.7 Etiska överväganden ... 16
 2.8 Statistisk analys ... 17

3 Resultat ... 17
 3.1 Submaximal löphastighet .. 18
 3.1.1 Löpekonomi ... 18
 3.2 Hjärtfrekvens och laktat ... 20
 3.3 Prestationstest ... 20
 3.4 Löpodynamik ... 21
 3.4.1 Stig – submax .. 21
 3.4.2 Obanat – submax .. 21
 3.4.3 Stig – maximalt prestationstest ... 22
 3.5 Korrelationsanalyser .. 22

4 Sammanfattande diskussion ... 23
 4.1 Resultatdiskussion .. 23
 4.2 Metoddiskussion ... 26
4.3 Begränsningar ... 27
4.4 Framtida forskning ... 28
5 Slutsats ... 29
Käll- och litteraturförteckning ... 31

Bilaga 1 Käll- och litterursökning
Bilaga 2 Testprotokoll
Bilaga 3 Informationsbrev/Informerat samtycke
Bilaga 4 Hälsodeklaration
Bilaga 5 Träningsplanering
Bilaga 6 Träningsövningar
Bilaga 7 Bilder på utrustning

Tabell- och figurförteckning
Figur 1 – Faktorer som påverkar löpekonomi ... 5
Tabell 1 – Grundläggande data för de FP som fullföljde studien 9
Tabell 2 – Grundläggande data från förtester för de två grupperna 11
Figur 2 – Skillnad i löptid på submaximala slingor mellan för- och eftertest 18
Figur 3 & 4 – Skillnaden i löpekonomi mellan för- och eftertest 19
Tabell 3 – Procentuell förändring av löpekonomi mellan för- och eftertest 19
Tabell 4 – Anova av förbättring i löpekonomi för båda grupperna på två underlag ... 19
Figur 5 – Förbättringen i löpekonomi för de båda grupperna per underlag 19
Tabell 5 – HF per grupp och slinga ... 20
Figur 6 & 7 – Förändring av VO$_{2}$max och maxlaktat mellan för- och eftertest 21
Figur 8-10 – Förändring av löpdynamiska parametrar vid submaximal stiglöpning 21
Figur 11-13 – Förändring av löpdynamiska parametrar vid submaximal terränglöpning ... 22
Figur 14-16 – Förändring av löpdynamiska parametrar vid maximalt prestationstest ... 22
Figur 17 – Korrelationen mellan förändring i LE och förändring i löptid 22
Figur 18 – Korrelation mellan förändring i löptid och förändring i VO$_{2}$max 23
Figur 19 – Korrelation mellan förändring i LE och förändring i VO$_{2}$max 23
1 Inledning

Orientering är en idrott där du, med hjälp av karta och kompass, så snabbt som möjligt ska förflytta dig från start till mål i obevakad terräng, med passering av ett visst antal markerade kontroller. Med sin grund i 1700-talets militärväsen har idrotten genomgått en omfattande utveckling till den tävlingsidrott som den idag är, med breda krav på såväl fysisk, teknisk, mental och taktisk kapacitet (Hébert-Losier, Mourot & Holmberg 2015, s. 381; Svenska Orienteringsförbundet 2008, s. 13). Vinnare blir den löpare som utifrån dennes styrkor väljer de taktiskt mest anpassade vägvalen utifrån orienteringsteknisk kunskap, den fysiska kapaciteten samt den löptekniska förmågan (Svenska Orienteringsförbundet 2008, s. 8 f.).

1.1 Introduktion

För att kunna prestera i en konditionsidrott är det en stor mängd faktorer, både fysiologiska och psykologiska, som spelar in (Larsen & Mattson 2013, s. 75). Den rent fysiska prestationsförmågan har i flertalet studier visats vara avgörande av den maximala syreupptagningsförmågan (VO\textsubscript{2max}), nytjandegraden eller laktattröskeln samt arbetsekonomin (Ibid, s. 76 ff.; Moore 2016, s. 793; Lucia et al. 2008, s. 172).

Vid mästerskapstävlingar inom orienteringen idag läggs alltmer fysiskt krävande banor, med en stor variation mellan svårframkomlig eller starkt kuperad terräng till längre transportsträckor eller mer lättlöpta partier vilka kräver en betydligt högre löphastighet (Svenska Orienteringsförbundet 2008, s. 13). ”Utvecklingen går mot tävlingsformer som favoriserar de som är bra på löpning […]” och Svenska Orienteringsförbundet menar att orienterare idag kräver större fokus på andra faktorer i träningen än vad som tidigare innefattats i den traditionella nordiska orienteringen (ibid).

Löpekonomi (LE), utöver den maximala syreupptagningsförmågan, har en avgörande roll gällande prestationsförmågan inom distanslöpning (Jensen, Johansen & Kärkkäinen 1999, s. 945; Turner, Owings & Schwane 2003, s. 60). Då det föreligger en markant skillnad mellan löpning på slät mark och löpning i terräng (Hébert-Losier et al. 2014, s. 450), syftar denna studie att undersöka utvecklingen av löpekonomi hos orienterare, då det krävs en bredare anpassningsförmåga till flertalet underlag.
1.2 Bakgrund

Inom orienteringen finns det ett flertal distanser att träna och tävla i. Sprintorientering står för den kortaste distansen med en tävlingstid på 12-15 minuter, vilket står i motsats till långdistans som innebär en tävlingstid på 60-120 minuter. Därutöver finns medeldistans, ultralång, stafett samt nattorientering på flertalet distanser. Tävlingsaktiva orienterare deltar vanligtvis i samtliga distanser, med undantag vid stora mästerskap där fokus behöver inriktas på en eller ett fåtal av dem för att kunna presteras på topp och optimera chanserna till höga placeringar. Då tävlingstiderna mellan de olika distanserna skiljer sig markant, är det underförstått att de ställer olika krav på löparen. (Svenska Orienteringsförbundet 2008, ss. 16 f.)

Sprint karakteriseras vanligtvis av lättlöpt underlag i form av park- eller stadsmiljö, med en hög löphastighet vid 90-95 % av den maximala syreupptagningsförmågan och höga laktatnivåer. Ett högt antal kontroller genererar även många inbromsningar och accelerationer, vilket ställer högre explosivitets- och styrkekrav än övriga distanser. Långdistansen består av mer taktiskt krävande banläggning där vägvalen spelar en stor roll, och de taktiska överväganden hamnar i fokus. Terrängen är vanligtvis mer varierad, med vissa sträckor i starkt kuperad terräng och andra transportsträckor i mer lättlöpt skog eller på stig, vilket kräver flertalet tempoväxlingar och en god aerob kapacitet. Medeldistansen infinner sig mellan sprinten och långdistansen, såväl i löptid som i teknisk, taktisk och fysisk utmaning med en högre löphastighet kombinerat med en mer tekniskt krävande terräng. (Ibid)

1.2.1 Förutsättningar för prestation

För att kunna presteras på topp inom orientering är det flertalet faktorer som en löpare behöver bemästra. En orienteringsteknisk kunskap med en förståelse av karta och terräng, en orienteringstaktisk kunskap att kunna välja de bäst anpassade vägvalen efter egen förmåga och en mental kunskap att bibehålla fokus på karta och orientering är bara ett fåtal av de faktorer som är av vikt. Därutöver tillfaller de fysiologiska faktorerna som en god syreupptagningsförmåga, uthållig och stabiliserande muskelstyrka samt god löpteknik och löpekonomi. (Svenska Orienteringsförbundet 2008, ss. 13 ff., 18 ff., 25ff.; Hébert-Losier, Mourot & Holmberg 2015, s. 381; Moore 2016, s. 793)

Hébert-Losier, Mourot och Holmberg sammanfattar orienteringens breda krav:

Hébert-Losier, Mourot och Holmberg
The sport of orienteering requires developed mental skills [...] Orienteering is also physically demanding, wherein the highly skilled orienteering athlete exhibits high maximal aerobic power, pronounced ability to run on steep inclines, rapid running speeds on various surfaces, and better running economy in the forest than the subelite orienteer as well as the national-level track and field athlete (2015, s. 381).

Flertalet studier gjorda på traditionella väglöpare har visat ett starkt samband mellan VO\textsubscript{2max} och prestationförmåga (Lucia et al. 2008, s. 172; Moore 2016, s. 794; Saunders et al. 2004, s. 466; Smekal et al. 2003, s. 682 f.). Svenska Orienteringsförbundet skriver i *Elitplanen* att det krävs en maximal syreupptagning på 75-80 ml/kg/min och 65-70 ml/kg/min för män respektive kvinnor för att uppnå världseliten inom orienteringen (2008, s. 14). VO\textsubscript{2max} är den faktor som tidigare varit av störst intresse vid jämförelse med andra prestationsfaktorer så som löpekonomi, vilket varit underordnat VO\textsubscript{2max} trots att det tycks vara en betydande faktor för prestationförmågan (Lucia et al. 2008, s. 172). Det har tidigare visats att uthållighetsidrottare efter några års intensiv träning uppnår en platå, där den maximala syreupptagningsförmågan inte längre ökar trots ökad volym eller intensitet vid träning (Paavolainen et al. 1999, s. 1530). Likaså kan inte enbart VO\textsubscript{2max} avgöra prestationförmågan i homogena grupper av löpare (Moore 2016, s. 794). Rattray och Roberts skriver dessutom att traditionella fysiologiska faktorer som VO\textsubscript{2max} och den individuella anaeroba tröskeln endast uppvisar en svag korrelation till orienteringsprestation (2012, s. 293). Därmed kan andra delar inom den fysiska förmågan vara av stor vikt för en fortsatt progression.

1.2.3 Löpekonomi

En faktor som kan särskilja mellan en god eller sämre prestationförmåga inom aeroba idrotter är arbetsekonomi, vid löpning kallat löpekonomi, vilket definieras som energikostnaden vid ett givet submaximalt arbete (Lucia et al. 2008, s. 172; Moore 2016, s. 794; Turner, Owings & Schwane 2003, s. 60). Löpekonomi benämns vid flertalet studier även som en bättre indikator för prestationförmågan än VO\textsubscript{2max} där exempelvis Moore skriver att löpekonomin i en grupp av löpare med likartat VO\textsubscript{2max}, kan skilja så mycket som 30 % (2016, s. 794) och Paavolainen et al. menar att VO\textsubscript{2max} är en bra indikator på prestationförmåga hos otränade individer, men att andra faktorer så som löpekonomi är en bättre indikator i homogena grupper av världseliten utomstående uthållighetsidrottare (1999, s. 1527). Bättre löpekonomi hos långdistanslöpare kopplas samman till en lägre vertikal förflyttning av löparens masscentrum, vilket troligtvis är relaterat till neuromuskulära adaptationer framkallat av långdistanslöpning vid låg intensitet. Uthållighetsträning leder till ökad funktionalitet av skelett-muskulaturens...
mitokondrier, och en ökad respiratorisk kapacitet i skelettmuskulaturen gör att mindre syre förbrukas per mitokondriell respirationskedja vid givet submaximalt arbete. Detta leder till förbättring av löpekonomi, med mindre störning av kroppens homeostas och en lägre förbrukning av muskelglykogen i arbetande muskulatur. (Gollnick & Saltin 1982, s. 2; Saunders et al. 2004, s. 471) Lättpare med en bra löpekonomi förbrukar alltså mindre syre, och därmed mindre energi, än lättpare med sämre löpekonomi vid arbete på samma submaximale hastighet under steady-state (ibid, s. 466). Barnes och Kilding menar även på att lättpare tenderar att anta sin egen mest ekonomiska löpstil, och att studier har visat att lättpare väljer det bäst individuellt anpassade löpstegepromstret, vilket poängterar betydelsen av löpträningens utsträckning (2015a, s. 7). Paula Radcliffe, världrekordhållare på marathondistansen under flera år, var objekt för en långvarig studie på 12 år som påbörjades då hon var 17 år gammal. Radcliffe uppvisade en sänkning av sin energikostnad med 14,5 % till följd av en träningsplanering bestående av huvudsakligen löpning, vilket ytterligare påvisar effekten av långvarig träning. (Lacour & Bourdin 2015, s. 661 f.)

Liksom Barnes och Kilding (2015a, s. 7) beskriver både Moore (2016, s. 794) och Lacour och Bourdin (2015, s. 656) att lättpare naturligt anpassar sin löpdynamik, så som stegfrekvens och steglängd, till vad som är näst intill löpekonomiskt optimalt. En tränad lätpara matematiskt mest optimala löpdynamik skiljer sig i genomsnitt 3 % från vad lätparen själv föredrar, medan det för lätpare med mindre erfarenhet är en större skillnad mellan den föredragna och matematiskt optimala stegfrekvensen (Moore 2016, s. 794 f.). Vertikalförflyttning är en annan löpdynamisk parameter som Moore (2016, s. 795) nämner, där en högre vertikalförflyttning leder till ökat VO₂ och att en reducerad vertikal rörelse därmed skulle kunna leda till en förbättrad löpekonomi. Interventionsstudier med exempelvis plyometrisk träning har visat positiva resultat på löpdynamiska parametrar, som i sin tur gett en gynnsam effekt på löpekonomin, men främst tycks kontinuerlig löpning över tid vara av störst vikt där lätparen utvecklar sin individuellt mest ekonomiska löpdynamik (Barnes & Kilding 2015a, s. 7; Lacour & Bourdin 2015, s. 656; Moore 2016, s. 794).

Löpekonomi kan uttryckas på flertalet sätt; syrekostnaden för en given distans (ml/kg/km), VO₂ relaterad till kroppsvikt per minut (ml/kg/min) eller som kaloriförbrukning (kcal/kg/km) (Barnes & Kilding 2015a, s. 3; Fletcher, Esau & MacIntosh 2009, s. 1918; Saunders et al. 2004, ss. 468 f.). Även om definitionerna skiljer sig åt, brukar de vanligtvis användas synonymt till varandra (Lacour & Bourdin 2015, s. 652). Fletcher, Esau och MacIntosh
påvisade dock i sin studie att löpekonomi mätt som kaloriförbrukning var mer känslig för förändringar i relativ hastighet än då löpekonomi uttrycks som syrekostnad. Det föreslås därmed vara mer lämpligt att mäta löpekonomi som kcal/kg/km då både aerob och anaerob metabolism tas i beaktande (Fletcher, Esau & MacIntosh 2009, s. 1920).

Vid löpekonomitester på orienterare har det inte uppvisats någon skillnad vid stiglöpning mellan elit- och subelitlöpare, men det har dock visats bättre löpekonomivärden för elitlöpare vid tung terränglöpning, vilket tyder på att det är av stor vikt för prestationsutveckling hos orienterare (Jensen, Johansen & Kärkkäinen 1999, s. 945). I synnerhet då orienterare utför mer än 50 % av sin träning i terräng (ibid). Vid jämförelse mellan elit- och subelitlöpare (traditionella väglopare) har liknande resultat visats, med en bättre löpekonomi hos elitlöpare (Fletcher, Esau & MacIntosh 2009, s. 1918). Studier som nyttjat interventioner av varierande karaktär har visat att löpekonomi är förändringsbart, det vill säga att det är en träningsbar faktor, och förbättringar på 2-8 % har uppvisats efter kortsiktiga träningsinterventioner (Moore 2016, s. 794). I begreppet löpekonomi innefattas en mängd faktorer varav flertalet är träningsbara, men även genetiskt bundna faktorer, se figur 1 (Barnes & Kilding 2015a, s. 2).

Figur 1 – Faktorer som påverkar löpekonomi (Barnes & Kilding 2015a, s. 2)
1.2.4 Orientering vs. löpning

Orientering är en uthållighetsidrott som skiljer sig från andra löprelaterade idrotter, både sett till de kognitiva elementen och till de olika terrängtyperna som involveras (Jensen, Johansen & Kärkkäinen 1999, s. 945). ”In competitions, the orienteer needs to adapt to numerous types of surfaces (e.g., asphalt, dirt roads, fields, and forests), and consequentially, running rapidly on several surfaces uniquely characterizes competitive orienteering” (Hébert-Losier et al. 2014, s. 448). Terrängen är ofta relativt tuff, med såväl hinder som mjukt underlag eller branta backar, vilket ger en större muskulär belastning än långdistanzlöpning på bana eller plana underlag (Jensen, Johansen & Kärkkäinen 1999, s. 945). Mätningar med elektromyografi (EMG) har visat en ökad aktivitet i m.quadriceps femoris vid löpning i tyngre terrängtyper (Rattray & Roberts 2012, s. 294). Rattray och Roberts skriver även att metabolismen beror på vilken typ av terräng som forceras (ibid), vilket stärks av Creagh & Reilly som nämner att energikostnaden kan öka mellan 26 % till 72 % beroende på underlagets densitet och kupering (1997, s. 411). I en studie av Binnie et al. (2014, s. 1005) uppmärksammades underlagets påverkan på träningseffekt hos lagidrottare, vilket uppvisade att gruppen som utförde en viss del av sin träning på sand hade en högre genomsnittlig hjärtfrekvens och uppskattad träningsbelastning än gruppen som utförde sina träningspass på gräs. Jensen, Johansen och Kärkkäinen jämförde i sin studie orienterare och löpare på olika underlag, med ett högre VO₂ vid obanad löpning än stiglöpning för både grupperna, samt med 41±9 % och 52±12 % försämring av löpekonomi för orienterarna respektive löparna vid övergång från stig till tung terräng (1999, s. 948).

Löpekonomi vid löpning på plana underlag bestäms som tidigare nämnts av flertalet faktorer, däribland muskelfiberfördelning där en lägre metabol kostnad visats i typ 1-fibrer, löpdynamiska parametrar så som markkontakt och stegfrekvens, antropometriska förutsättningar samt elasticitet i muskler och senor (Lacour & Bourdin 2015, s. 651-673, Saunders et al. 2004, s. 471). Denna elasticitet gör att energi från den excentriska fasen av ett löpsteck lagras i muskler och senor för att sedan kunna utnyttjas i den påföljande koncentriska fasen, och brukar benämns som stretch-shortening cycle (SSC) (Lacour & Bourdin 2015, s. 653). Även förberedande Muskelfunktion är en viktig del av SSC, då den excentriska kontraktionen sker i hög hastighet och den koncentriska kontraktionen omedelbart följer därpå (Barnes & Kilding 2015a, s. 10). Balansen mellan excentrisk och koncentrisk muskelkontraktion kan potentiellt ha påverkan på löpekonomi, då den excentriska fasen där energin lagras är mindre kostsam än den koncentriska fasen (ibid). Barnes och Kilding skriver
även att det har beräknats att akillessenan och senor i fotvalvet kan lagra 35 respektive 17 % vardera av energin som uppkommer i ett löpsteg vid moderat löphastighet, och att syreförbrukningen möjligtvis skulle vara 30-40 % högre utan bidraget från den elastiska energilagringen (2015a, s. 11). Den elastiska kapaciteten påverkas av stretch-rörelsens omfattning, stelheten och nivån av aktivering gällande muskelsenan samt tidsfördröjningen mellan slutförandet av stretchfasen och inledandet av den efterföljande koncentriska kontraktionen (Saunders et al. 2004, s. 474). SSC tycks därmed inte kunna utnyttjas till lika stor del vid löpning i skog eller på mjukare underlag, då en förlängd markkontakttid gör att den elastiska energin går till spillo och energikostnaden istället ökar (Bosco & Rusko 1983, s. 219 f.; Lacour & Bourdin 2015, s. 658).

1.2.5 Plyometrisk styrketräning

Förutom biomekaniska faktorer, muskelfiberfördelning, SSC, träningsbakgrund med mera så har även olika träningsstrategier en stor inverkan på löpekonomin, med ett brett spann av olika former av styrketräning vilka har visats effektiva för löpare på flera nivåer. Förbättringar av löpekonomi genom styrketräning tycks vara en konsekvens av förbättrad koordination, ökad muskelstyrhett, minskad markkontakttid, förbättrad biomekanisk effektivitet och muskelaktivitet samt en ökad muskelfiberstyrka vilket resulterar i färre aktiverade motorenheter för att producera given kraft. Löparen utvecklar alltså en mer effektiv löpekonomi vid given hastighet, som därmed kostar mindre energi. (Balsalobre-Fernández, Santos-Concejero & Grivas 2016, s. 2361)

Av styrketräningens olika former har träningen med explosivt utförande uppmärksammats i flertalet studier, med förbättringar av löpekonomin med 2-7 % (Balsalobre-Fernández, Santos-Concejero & Grivas 2016; Barnes & Kilding 2015b; Paavolainen et al. 1999; Saunders et al. 2004; Saunders et al. 2006; Turner, Owings. & Schwane 2003). Plyometrisk styrketräning ökar musklernas förmåga att utveckla kraft genom att stimulera SSC under olika typer av vertikala och horisontella hopp (Saunders et al. 2006, s. 947). Turner, Owings och Schwane skriver att det visats att plyometrisk träning förbättrar hoppförmågan och andra rörelser med hög power, vilket antyder att den plyometriska träningen förbättrar musklernas förmåga att använda den elastiska energin under SSC (2003, s. 60). Saunders et al. skriver att plyometrisk träning gör att Kroppen, genom att öka styvheten i muskel och sena, både kan lagra och nyttja elastisk energi mer effektivt (2004, s. 477).
Balsalobre-Fernández, Santos-Concejero och Grivas påvisade i sin meta-analys på medel- och långdistanslöpare (VO2max >60 ml/kg/min) att >4 veckors styrketräning av plyometrisk karaktär gav en genomsnittligt förbättrade löpekonomi med 1,88±2,31 ml/kg/min (p <0,001) (2016, s. 2362 ff.). Turner, Owings och Schwane uppvisade med sin studie på motionärslopare en förbättrad löpekonomi (p < 0,05) efter 8 veckors plyometrisk styrketräning, utan förändrad hoppförmåga (2003, s. 64 f.). En studie gjord på elitorienterare påvisade att kombinerad löp- och plyometrisk träning under 9 veckor gav en 3 % förbättrad löptid vid 5 km löpning på en 200 meters löparbana inomhus (p <0,05), en lägre markkontakttid (p < 0,001), förbättrad löpekonomi med 7,5 % (p <0,05) samt en högre hastighet vid maximalt anaerobt löptest (Vmax) (p <0,05) för experimentgruppen jämfört med kontrollgruppen (Paavolainen et al. 1999, ss. 1528 ff.). En korrelationsanalys visade ett signifikant samband mellan den förbätttrade hastigheten vid det 5km långa löptestet och den förbättrade löpekonomin (p < 0,05) samt en negativ korrelationskoefficient mellan förändringar i maximal syreupptagningsförmåga och hastigheten vid löptestet (p <0,05) (ibid, s. 1530). 4-8 veckors träningsinterventioner är vanligt förekommande i plyometristudier, men förändringar i löpekonomi har visats efter så lite som 3 veckor av specifik träning (Paavolainen et al. 1999, s. 1530; Turner, Owings och Schwane 2003, s. 61).

1.3 Forskningsläge

Flertalet studier har som tidigare beskrivet visat signifikanta resultat gällande effekten av plyometrisk träning på löpekonomi vid löpning på plana underlag. Det saknas i nuläget studier gällande effekten av underlaget vid den plyometriska träningen, samt om olika träningsunderlag korrelerar med förändring av löpekonomi vid löpning på olika underlag. Saunders et al. hade i sin studie träningspass inomhus i gym samt utomhus på gräsplan, dock inte i separata träningsgrupper utan båda underlagen ingick i experimentgruppens träningsplanering och var inte en del av studiens undersökning (2006, s. 948). Då löpekonomin hos elitorienterare jämfört med orienterare på lägre nivå har visats vara bättre, samt att löpekonomin tycks försämras vid övergång från väg-/stiglöpning till obanad terräng (Jensen, Johansen & Kärkkäinen 1999, s. 948) skapas intresset för att undersöka om den plyometriska träningen kan utföras mer idrottsspecifikt och därmed ge effekt på löpekonomin även vid mjukare underlag.
1.4 Syfte och frågeställningar

Syftet med denna studie är att undersöka om underlaget vid plyometrisk träning påverkar löpekonomin hos orienterare vid varierande underlag.

Frågeställningar

• Ger plyometrisk träning på mjukt underlag bättre löpekonomi hos orienterare vid löpning i terräng?
• Är effekten på löpekonomin specifik för det underlag plyometrin har tränats på?
• Hur påverkas löpdynamiska parametrar av plyometrisk träning på olika underlag?

Hypotes

Då tidigare studier har visat på att plyometrisk styrka på hårt underlag kan ge positiv effekt på löpekonomin hos traditionella väglöpare, är hypotesen att denna träningsform utförd på mjukt underlag kan leda till en förbättrad löpekonomi vid löpning i obanan terräng.

2 Metod

2.1 Försökspersoner

Som försökspersoner (FP) rekryterades initialt 27 orienterare till studien, med en första kontakt via ansvariga tränare. 25 av dessa utförde förtesterna och inledde träningsinterventionen, varav 19 slutligen fullföljde hela studien. Av de 19 försökspersoner som fullföljde studien var 11 kvinnor och 8 män, se tabell 1. Deltagarna var primärt elever från orienteringsgymnasium, sekundärt löpare från orienteringsföreningar i Stockholmsområdet. Krav för medverkan var aktiva orienterare med >3 träningspass per vecka, ålder 16-31 år, inga nuvarande skadebekymmer/överbelastningsproblematik eller operation under det senaste året.

Tabell 1 – Grundläggande data för de FP som fullföljde studien. Informationen redovisas som medelvärde samt SEM

<table>
<thead>
<tr>
<th></th>
<th>Antal</th>
<th>Andel</th>
<th>Ålder (år)</th>
<th>Vikt (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvinnor</td>
<td>11</td>
<td>58 %</td>
<td>22,27 ± 1,93</td>
<td>56,72 ± 1,13</td>
</tr>
<tr>
<td>Män</td>
<td>8</td>
<td>42 %</td>
<td>19,25 ± 1,63</td>
<td>67,01 ± 2,48</td>
</tr>
</tbody>
</table>

2.1.1 Bortfallsanalys

2.2 Studiens utformning

Ett för- och eftertest ägde rum på och i närheten av Gymnastik- och idrottshögskolan (GIH) i Stockholm. Information samt ifyllnad av informerat samtycke och hälsoenkät skedde i en lokal på GIH och fälttestet var beläget fem minuters löpväg bort i Lill-Jansskogen. Träningspassen utförde FP individuellt i idrotshall eller gym, beläget vid studieplats eller idrottsföreningslokal. Studien var utformad som oblidad, där FP utifrån kön, föreningstillhörighet samt testresultat uppdelades i två homogena grupper; en grupp där den plyometriska träningsinterventionen utfördes på mjukt underlag och en grupp för hårt underlag. På grund av avhopp under studiens gång blev grupperna i slutändan något snedfördelade, då de FP som föll bort tillhörde samma grupp, se tabell 2.
Tabell 2 – grundläggande data från förtester för de två grupperna. Informationen redovisas som medelvärde samt SEM

<table>
<thead>
<tr>
<th></th>
<th>Hårt underlag</th>
<th>Mjukt underlag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Män (antal)</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Kvinnor (antal)</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Ålder (år)</td>
<td>21,57 ± 2,28</td>
<td>20,67 ± 1,69</td>
</tr>
<tr>
<td>Kroppsvikt (kg)</td>
<td>57,03 ± 2,92</td>
<td>63,41 ± 2,09</td>
</tr>
<tr>
<td>LE på stig (kcal/kg/km)</td>
<td>1,08 ± 0,03</td>
<td>1,12 ± 0,03</td>
</tr>
</tbody>
</table>

Studien bestod av en träningsintervention på drygt fyra veckor, där FP två gånger per vecka utförde träningsträning bestående av plyometriska hoppövningar. Förtestet ägde rum veckan innan träningsinterventionens uppslag, och eftertesterna genomfördes samma vecka som det/de sista träningsträningarna utfördes, dock med minst 48 timmars återhämtning där emellan.

FP blev inför träningsinterventionen omedveten att fortsätta sin rådande träningssmängd gällande löpning/orientering utan vidare förändringar, dock med en viss minskning av eventuell tung styrketräning för benen för att belastningen inte skulle bli för hög.

2.3 Material

turbinens in- och utandningsvolym mot en 3-l kalibreringsspruta (M9474-C, Medikro OY, Kuopio, Finland). Turbin och nafionslang byttes ut, samt en enpunktskalibrering av O₂ och CO₂ sensorerna (s.k zero-adjustment) utfördes inför varje enskilt test.

Mätningar med Metamax 3B kan ske vid temperaturer mellan -10° och +40°, vid lufttryck på 500-1000 mbar samt 0-99 % luftfuktighet. Datan lagras i utrustningens logger och förs över via blutetooth till MSS Toolbox och exporteras sedan till mjukvaran MetaSoft® Studio där analys kan ske. En mängd variabler fås genom Metamax 3B så som VO₂max, VO₂/kg, VCO₂/kg, RER, FIO₂, FEO₂, RR och V̇R.

Mätning av hjärtfrekvens och löpdynamik gjordes med en GPS-klocka av modell Garmin Forerunner 620 med tillhörande pulsband innehållandes en accelerometer, HRM-Run™ (Garmin Ltd., Lenexa, Kansas, USA). Accelerometern registrerar rörelser i överkroppen hos löparen vilket omvandlas till flertalet löpdynamiska parametrar som stegfrekvens, vertikalfförlyftning och markkontakttid. Registreringen av puls och löpdynamik skedde med så kallad smart registrering, där nyckelpunkter registreras vid ändring av riktning, tempo eller puls. Datan överfördes till Garmin Connect där informationen redovisas i grafer med utmärkta nyckelpunkter samt en sammanställd lista med medel- och maxvärden per registrerad varvtid.

2.4 För- och eftertest

För att undersöka utgångsläget för FP samt analysera effekten av träningsinterventionen genomfördes ett fälttest med mätning av löpekonomi i Lill-Janskogen i närheten av Gymnastik- & Idrottsöskolan (GIH) i Stockholm. Testledare för fälttestet var personal från Riksidrottsförbundets idrottsfysiologiska laboratorium. Testet bestod av tre löpslingor, två på grusväg/asfalt och en i obanad terräng, varav alla var väl utmarkerade med röd-vita snitslar.
De båda slingorna gick parallellt med varandra för att undvika stora skillnader i kupering, samt med distanser på 1,35 km för stiglöpningen respektive 1,2 km för terränglöpningen. Slingan i obanad terräng bestod av varierande undervegetation, samt med inslag av både barr och lövskog. Slingorna löptes i ordning av stig, obanad terräng och stig. De första två slingorna löptes med submaximal intensitet, där löparna ombads springa i en hastighet jämförs med med en långdistans samt en skattad ansträngning motsvarande 12-13 på borgskalan. Detta innebar en löptid på mellan fem och tio minuter per slinga. En submaximal intensitet samt en löptid >5 minuter önskades för att uppnå steady-state samt motsvara definitionen för löpekonomi; en submaximal syreförbrukning (Saunders et al. 2006, s. 947 & 949). Den sista slingan på stig utgjorde ett prestationstest för maximal syreupptagningsförmåga (VO$_{2\text{max}}$), där löparna med en jämn maximal intensitet genomförde slingan som avslutades med ett lätt motlut. VO$_{2\text{max}}$ mättes på för- och eftertest för att markera utgångspunkten FPs fysiska nivå, samt utvärdera om den fysiska nivån förändrats fram till tidpunkten för eftertestet.

Uppvärmningen inför testerna bestod av fem minuters löpning från GIH till fälttestets start- och målområde. Därefter skedde montering av portabel syreupptagningsutrustning (Cortex MetaMax 3B) samt GPS-klocka med tillhörande pulsband (Garmin Forerunner 620 och HRM-Run™) innan löptesterna inleddes. Mellan varje löpslinga var det en minuts stående vila, under vilken en laktatprovtagning skedde. Vid det avslutande prestationstestet på stig togs laktatprovet en minut efter målgång. Laktatprovet togs genom ett stick i fingertoppen, där kapillärblod uppsamlades i ett kapillärrör (20 µl) som sedan lades i ett ”EKF pre-filled Safe-Lock reaction cup” (EKF-diagnostics, Barleben, Tyskland) vilken innehåller 1000 µl hemolyseringslösning. Proverna från samtliga tester frystes ned för att vid återkomst till GIH:s Laborаторie för tillämpad idrottsvetenskap (LTIV) analyseras i Biosen C-Line Clinic (EKF-diagnostics, Barleben, Tyskland).

Syreupptagningsförmågan uppmättes på alla tre nivåer för att fastställa den submaximala löpekonomin vid stig- och skogslöpning samt den maximala syreupptagningsförmågan under det avslutande prestationstestet. Insamlingen från MetaMax 3B sker andetag för andetag och vid analys av datan definierades löpekonomin som tiden vid steady-state, Detta för att undvika felkällor vid insamlingen under acceleration och deceleration vid varje sträcka. Beräkning av löpekonomi gjordes med utgångspunkt från erhållen data vid kcal/h från MetaSoft Studio, enligt formeln (kcal/h)/(3600 sek)*löptid på slingan (s)). I efterföljande
beräkning dividerades summan med kroppsvikt (kg) och slingans längd (km). För att säkerställa att de två första löpslingorna var submaximala kontrollerades i efterhand laktatvärdena, vilka skulle infinna sig under 4mmol/l. Denna nivå används enligt metoden OBLA (Onset of blood lactate accumulation) där två fixerade laktatvärden definierar laktattröskel 1 respektive 2, 2 och 4 mmol/l (Larsen & Mattson 2013, s. 244). Den sista slingan löptes på samma slinga som den första submaximala stiglöpningen, men utfördes med maximal intensitet. Syftet var att fungera som ett prestationstest och uppnå VO\textsubscript{2max}. Den maximala syreupptagningen beräknades på den högsta sammanhängande perioden på 45 sekunder.

Pulsmätning skedde vid för- och eftertest med hjälp av GPS-klockan Garmin Forerunner 620 och pulsband HRM-Run™. Testledaren startade ny varvtid i klockan vid varje start- och målgång på slingorna för tidtagning. Pulsfilerna överfördes i efterhand till Garmin Connect där medelvärden för varje löpslinga visades. Vid de tillfällen då en felaktig varvtid uppstått skedde en manuell beräkning av medelvärden per slinga utifrån registrerade nyckelvärden för de olika mätparametrarna. Garmin Forerunner 620 tillsammans med pulsbandet innehåller även funktioner för löpdynamik, då det i pulsbandet finns en accelerometer. Accelerometern mäter rörelser i överkroppen vilka beräknas om till löpdynamiska parametrar. I denna studie kommer stegfrekvens (steg/min), vertikalförflyttning (rörelse i lodrät riktning mätt i cm) samt markkontakttid (tid för foten i marken mätt i millisekunder) att redovisas.

2.5 Träningsintervention – Plyometrisk styrketräning

Träningsinterventionen pågick under ca 5 veckor, där FP skulle utföra två träningspass på ca 20-30 minuter per vecka (totalt 9-10 träningspass), med 48-72 timmars vila mellan passen. För att praktiskt och logistiskt underlätta för FP utfördes passen enskilt och/eller i samband med träningar under skoltid eller med förening. Gruppen för hårt underlag ombads träna hoppövningarna på ett gymnastikssalgolv och gruppen för mjukt underlag på en ca 6 cm tjock mjuk gymnastikmatta. Till de övningar där en plint behövdes, användes plintar med en höjd på ca 30 cm över underlaget. Varje träningspass inleddes med >20 minuters lågintensiv uppvärmning bestående av löpning, orientering eller cykling. Då syftet med träningspassen var att utföra varje enskilt hopp med maximal explosivitet och kraft samt med kort kontakttid, var vilan mellan varje intervall/övning väl tilltagen för tillräcklig återhämtning. Träningspassen bestod av sju hoppövningar med rörelseriktningar i både frontal- och sagitalplan för att efterlikna orienteringslöpning vid svårframkomlig terräng. En progression
av antal hopp per pass skedde under träningsperioden, med 28 hopp samt löpskolning per ben och per pass under den inledande veckan och 50 hopp samt löpskolning per ben och pass den avslutande veckan. De övningar som fanns med var (och utfördes i följande ordning):

- Löpskolning med explosivt knäuppdrag på vart tredje löpstep
- Drop jump (jämfota)
- Drop jump (enbens)
- Vristhopp (enbens)
- Skridskohopp (sidledsrörelse)
- Stående tresteg
- Utfallshopp

Dessa övningar valdes dels utifrån tidigare studier (Balsalobre-Fernández, Santos-Concejero & Grivas 2016, s. 2364; Saunders et al. 2006, s. 948; Turner, Owings & Schwane 2003, s. 62), dels från väl använda övningar inom traditionell väglöpning samt från rehabilitering inom orienteringen. För fullständig träningsplanering och övningsbeskrivning, se bilaga 5 och 6.

2.6 Validitet och reliabilitet

Metamax 3B har varit av intresse för validitetsprövning i flertalet publicerade studier (Prieur, Castells & Denis 2003; Macfarlane & Wong 2012; Vogler, Rice & Gore 2010). Metamax 3B är efterföljaren till de tidigare Metamax 1 och 2, vilka har visats vara valida och reliabla (Macfarlane & Wong 2012, s. 2540). Vid jämförande studier mellan Metamax 3 och Douglas-Bag metoden, vilken anses vara Golden Standard, har resultat visat att Metamax 3 kan ge en viss felmarginal, med 4 % högre värden för VO₂ och VCO₂ jämfört med kriterierna för Douglas Bag-metoden (Vogler, Rice & Gore 2010, s. 737 ff.). Det har inte visats signifikant skillnad från test till test med Metamax 3B, vilket tyder på god reliabilitet (ibid, s. 737). Både Macfarlane och Wong (2012, s. 2542) samt Vogler, Rice och Gore (2010, s. 741) menar dock att validiteten för Metamax 3B inte är perfekt, men kan ge en godtycklig indikation av de
verkliga metabola kraven vid aktivitet. Douglas Bag-metoden anses fortfarande ge de mest valida och reliabla resultaten, men är vid fälttester svårare att genomföra än med Metamax 3B (Prieur, Castells & Denis 2003, s. 881 f.).

Validiteten för accelerometerbaserad löpdynamik från Garmin Forerunner 620 har undersöks av Watari et al. (2016). 22 sub-elitlöpare fick springa på ett löpband med inbyggd utrustning för att registrera markkontakttid, med ett pulsband med accelerometer runt bröstkorgen samt en sfärisk reflekterande markör fäst fram på pulsbandets monitor. En jämförelse gällande vertikalförflyttning mellan accelerometermätningen och resultatet från en tredimensionell filmning av markören visade en god överensstämmelse. Markkontakttden underskattades av accelerometermätningen jämfört med löpbandets inbyggda mätare vid låga löphastigheter, men visade bättre samband vid högre hastigheter. Överlag visades en god överensstämmelse. (ibid, s. 306 ff.)

Validitet och reliabilitet gällande FP inför för- och eftertest eftersträvades genom att delge information gällande återhämtning och kosthållning inför testerna, samt val av kläder och skor. De val FP gjorde inför forttestet ombads efterliknas till största möjliga mån inför eftertestet. Eftertestet planerades även till liknande tid på dygnet som på forttestet för samtliga FP. Både för- och eftertest utfördes av samma testledare, samt rutinen för testerna, protokollet och anvisningarna vid teststart efterliknades.

2.7 Etiska överväganden

För att följa de riktlinjer som finns gällande deltagarnas medverkan i studien har hänsyn tagits till de fyra forskningsetiska principerna; informationskravet, samtyckeskravet, konfidentialitetskrevat och nyttjandekravat (Vetenskapsrådet 2002, ss. 7-14). Denna studie inleddes med en ansökan till den regionala etikprövningsnämnden i Stockholm för att få godkännande att utföra tester och träningsintervention. Efter godkännande skickades skriftlig information ut till FP (bilaga 3) innehållandes information om studiens upplägg, FP:s roll i studien och villkor för deltagande. En studie likt denna innebär en förändrad träningsrutin.
med nya moment som innefattar en annan träningsbelastning, och därmed påverkar den normala tränningen och ger en ökad skaderisk, vilket var av stor vikt att dels få etiskt godkännande för, samt att förtydligas för FP. Likaså informerades FP om att deltagandet är frivillingt och att de har rätt att avbryta studien utan vidare förklaring, rätten till anonymitet, att all data hanteras konfidentiellt utan tillgång för utomstående samt att den insamlade datan endast brukas till rådande forskningsändamål. Inom tävlingsidrott kan testsvar om den fysiska kapaciteten upplevas som känslig information, vilket därmed förstärker betydelsen av konfidentiellt och anonymt användande av resultaten. Inför studiens uppstart fick FP skriva under informerat samtycke samt genomföra en hälsoenkät vid ankomst till förtest, se bilaga 3 och 4. Då alla FP var >16 år fick de enskilt ansvar för skriftligt samtycke, men ombads att muntligt samråda med vårdnadshavare inför studiestart då de var av omyndig ålder.

2.8 Statistisk analys

Efter exportering av data från MetaSoft® Studio och Garmin Connect har bearbetning av data skett i Microsoft Excel:mac 2011 (Microsoft Corporation) och Prism 7 för Mac OS X (GraphPad Software, Inc.). Medelvärden, standardavvikelsen från medelvärdet samt standardavvikelsen för populationsmedlet (Standard error of the mean - SEM) beräknades i Excel med hjälp av funktionerna MEDEL, STDAV och STDAV/√gruppens storlek. Övrig analys gjordes i Prism 7, där normalfördelningen först kontrollerades med hjälp av D’Agostino & Pearson normality test. För analys av förändringar mellan för- och eftertest per träningsgrupp har Students t-test använts (parat med tvåsidig fördelnin). Pearsons korrelationsanalys gjordes för att se samband mellan uppmätta parametrar gällande prestationstestet, så som förändring i löptid mot förändring i löpekonomi. För att analysera skillnaden mellan de båda testgrupperna samt de båda underlagen användes ANOVA. Resultaten presenteras i grafer och tabeller som medelvärden samt standardavvikelse för populationsmedlet (SEM). Signifikansnivån sattes till p <0,05.

3 Resultat

I resultaten benämns grupperna som hårt eller mjukt utifrån det underlag de utfört den plyometriska träningen på. Resultaten presenteras med hjälp av figurer och tabeller, där signifikanta resultat (p <0,05) visas med asterisk *. Resultat kopplat till löpekonomi visas med exakt p-värde då löpekonomi är studiens huvudsyfte, övriga resultat utan statistisk signifikans visas med i.s.
3.1 Submaximal löphastighet

Då FP inför de submaximala slingorna blev instruerade om att genomföra slingorna med lätt distansfart genomfördes upprepade t-test vid analys av löptiderna på de olika slingorna för att kontrollera att tiderna överensstämde mellan för- och eftertest. Det visades ingen signifikant skillnad i löptid per slinga varken för gruppen som tränat på hårt (p = 0,48 på stig, p = 0,97 i skog) eller på mjukt (p = 0,24 på stig, p = 0,89 i skog) underlag, se figur 2.

![Löptid submaximala slingor](image)

Figur 2 – Skillnad i löptid på submaximala slingor mellan för- och eftertest

3.1.1 Löpekonomi

En god löpekonomi är synonymt med en låg energiförbrukning, och en förbättrad löpekonomi innebär därmed att personen har sänkt sin kaloriförbrukning och konsumerar färre kcal vid givet submaximalt arbete. Vid analys av resultaten från för- och eftertest visades inga signifikanta effekter på löpekonomin på stigslingen för någon av träningsgrupperna. En svag trend mot förbättrad löpekonomi från 0,99 ± 0,02 till 0,95 ± 0,02 kcal/kg/km (p = 0,19) syntes i gruppen som tränat på hårt underlag, medan gruppen som tränat på mjukt underlag tenderade att försämra sin löpekonomi från 1,01 ± 0,02 till 1,03 ± 0,02 till kcal/kg/km (p = 0,25), se figur 3. Löpekonomin vid obanad terräng visade en signifikant förbättring (p = 0,03) för gruppen som tränat på hårt underlag med en förändring från 1,32 ± 0,02 till 1,25 ± 0,03 kcal/kg/km. Gruppen som tränat på mjukt underlag hade en näst intill oförändrad löpekonomi med värden på 1,36 ± 0,02 kcal/kg/km vid förtestet och 1,35 ± 0,03 kcal/kg/km vid eftertestet (p = 0,65), se figur 4. Den procentuella förändringen i löpekonomi mellan för- och eftertest redovisas i tabell 3. Ett negativt värde visar på förbättrad löpekonomi och lägre energiförbrukning (kcal/kg/min).
Figur 3 & 4– Skillnaden i löpekonomi mellan för- och eftertest på submaximala löpslingor

Tabell 3 – Procentuell förändring av löpekonomi mellan för- och eftertest

<table>
<thead>
<tr>
<th></th>
<th>Hårt</th>
<th>Mjukt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stig</td>
<td>-3,96 %</td>
<td>2,58 %</td>
</tr>
<tr>
<td>Skog</td>
<td>-4,98 %*</td>
<td>-0,85 %</td>
</tr>
</tbody>
</table>

Det visades en näst intill signifikant interaktionseffekt vid jämförelse av förbättringen i löpekonomi mellan de två grupperna och underlagen (p = 0,06), se tabell 4 och figur 5.

Tabell 4 – Anova av förbättring i löpekonomi för båda grupperna på två underlag med värden för sum of squares, degrees of freedom, mean squares, F-värde/kritiskt värde och signifikans

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mellan grupperna</td>
<td>0,04202</td>
<td>3</td>
<td>0,01401</td>
<td>F (3,32) = 2,692</td>
<td>P = 0,0626</td>
</tr>
<tr>
<td>Inom grupperna</td>
<td>0,1665</td>
<td>32</td>
<td>0,005203</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalt</td>
<td>0,2085</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figur 5 – Förbättring av löpekonomi från för- till eftertest för de båda grupperna per underlag
3.2 Hjärtfrekvens och laktat

Förändringen av medelvärdet för hjärtfrekvens visade endast signifikant skillnad för gruppen som tränt på mjukt underlag på den submaximale stiglöpningen, med en ökning från 157±4 slag/min till 162±4 slag/min (p = 0,03). Fullständig redovisning av hjärtfrekvens visas i tabell 5.

Tabell 5 – HF per grupp och slinga, redovisat som medelvärde med SEM

<table>
<thead>
<tr>
<th></th>
<th>Stig submax (HF-medel)</th>
<th>Obanat submax (HF-medel)</th>
<th>Prestationstest (HF-max)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hårt</td>
<td>Mjukt</td>
<td>Hårt</td>
</tr>
<tr>
<td>Före</td>
<td>161 ± 8</td>
<td>157 ± 4</td>
<td>170 ± 7</td>
</tr>
<tr>
<td>Efter</td>
<td>165 ± 8</td>
<td>162 ± 4</td>
<td>171 ± 7</td>
</tr>
<tr>
<td>Signifikans</td>
<td>p = 0,15</td>
<td>p = 0,03*</td>
<td>p = 0,62</td>
</tr>
</tbody>
</table>

Laktatvärdena på den submaximala terrängslingan visade en signifikant ökning från för- till eftertest hos gruppen som tränt på mjukt underlag, med värden från 1,84±0,34 till 2,48±0,36 mmol/l (p = 0,01). Förändringen i laktat visade inga signifikanta skillnader utöver detta.

3.3 Prestationstest

Vid den avslutande slingan på stig med maximal intensitet visades en försämring av den maximala syreupptagningsförmågan för båda grupperna, där gruppen som tränt på hårt underlag sänkte sina värden med 5,9±0,7 ml/kg/min (p = 0,0002) och gruppen som tränt på mjukt underlag sänktes med 4,5±1,4 ml/kg/min (p = 0,005), se figur 6. Trots en markant sänkning av VO₂max förblev löptiden för gruppen som tränt på hårt underlag näst intill oförändrad (1,3±5,4 sek, p = i.s) men visade en signifikant försämring för gruppen som tränt på mjukt underlag (11,1±4,2 sek, p = 0,03). Förändringen av maxlaktat mellan för- och efter test visade ingen signifikant skillnad, se figur 7.
3.4 Löpdynamik

3.4.1 Stig - submax

En signifikant skillnad gällande de löpdynamiska parametrarna vid den första slingan visades i vertikalförflyttning för gruppen som tränat på mjukt underlag. De uppgav en lägre vertikalförflyttning från 10,56±0,32 till 10,2±0,38 cm (p = 0,01), se figur 9. Gällande gruppen som tränat på hårt underlag samt stegfrekvens och markkontakttid för båda grupperna visades inga signifikanta förändringar, se figur 8-10.

3.4.2 Obanat - submax

Vid den submaximala löpslingen i obanad terräng visades inga signifikanta resultat för någon av de löpdynamiska parametrarna, se figur 11-13. Vertikalförflyttningen för gruppen som tränat på mjukt underlag visade den största förändringen från 10,96±0,27 cm till 10,65±0,31 cm vilket gav ett p-värde på 0,09, se figur 12.
3.4.3 Stig – maximalt prestationstest

De löpdynamiska parametrarna vid den avslutande stigslingan med maximal intensitet uppväxte inga signifikanta förändringar mellan för- och eftertest, se figur 14-16. Samtliga parametrar med p >0,25.

3.5 Korrelationsanalyser

I följande figurer visas samtliga FP, utan särskiljning av träningsunderlaget. Ett positivt samband visades vid en korrelationsanalys mellan förändringen i löptid på prestationstestet och förändringen i löpekonomi på stigslingan (r = 0,66). En förbättrad löptid korrelerade med en förbättrad löpekonomi (p = 0,004), se figur 17.

Figur 17 – Korrelationen mellan förändring i LE och förändring i löptid för samtliga FP
Det visades inget signifikant samband mellan förändringen i löptid och förändringen i VO$_{2\text{max}}$ (p >0,9), se figur 18.

Figur 18 – Korrelation mellan förändring i löptid och förändring i VO$_{2\text{max}}$ för samtliga FP

Det visades ingen signifikant korrelation mellan förändring i löpekonomi på stigslingan och förändring i VO$_{2\text{max}}$ vid prestationstestet (p >0,3), se figur 19.

Figur 19 – Korrelation mellan förändring i LE och förändring i VO$_{2\text{max}}$ för samtliga FP

4 Sammanfattande diskussion

4.1 Resultatdiskussion

Resultaten i denna studie påvisade en signifikant förbättring av löpekonomin vid obanad terränglöpning samt en tendens till förbättring vid stiglöpning för gruppen som tränat på hårt underlag (p = 0,03 respektive p = 0,19). Detta skedde trots ett försämrat VO$_{2\text{max}}$ (p = 0,0002). Gruppen som tränat på mjukt underlag uppvisade ingen signifikant förändring på löpekonomin, men likt den andra gruppen ett försämrat VO$_{2\text{max}}$ (p = 0,005). Hypotesen om att plyometrisk styrka på mjukt underlag ger en positiv effekt på löpekonomin vid obanad
terränglöpning bekräftades därmed inte, då den förbättrade löpekonomin vid skogslöpning uppkom efter plyometrisk träning utförd på hårt underlag.

En förbättring av löpekonomin med ett icke förbättrat VO$_{2\text{max}}$ har även visats vid tidigare studier, dock på traditionella vägglöpare och plant underlag (Paavolainen et al. 1999, s. 1530; Saunders et al. 2004, s. 477; Turner, Owings & Schwane 2003, s. 64). En signifikant korrelation visades vid jämförelse mellan förändring i löpekonomi på stig och förändring i löptid på det maximala prestationstestet (p = 0.004), vilket innebar att en förbättrad löptid korrelerade med en förbättrad löpekonomi och därmed lägre energiförbrukning. Att löpekonomi är en viktig faktor för prestationssättet tycks därmed överensstämma med vad tidigare studier visat (Moore 2016, s. 794; Turner, Owings & Schwane 2003, s. 60).

Fosträningen av den maximala syreupptagningsförmågan kan bero på FP:s övriga träning i form av löpning och orientering. Vid inledning av studien ombads FP att fortsätta sin rådande träningsvolym under studieperioden, vilket vid eftertesterna uppdagades inte hade skett. Då studieperioden sammanfällt med avslutningen av tävlingssäsongen hade flertalet FP tagit en eller ett par veckors höstvila med en betydligt lägre träningsmängd vilket kan ha påverkat resultatet för den maximala syreupptagningsförmågan.

Tidigare studier har indikerat att plyometrisk träning gör att muskulatur och senor kan lagra och nytta elastisk energi mer effektivt vilket resulterar i lägre markkontakttid och reducerad energiförbrukning (Barnes & Kilding 2015b, s. 45; Paavolainen et al. 1999, s. 1530). En förbättring av löpekonomin för gruppen på hårt underlag har skett, dock endast med signifikant resultat i obanad terräng samt en tendens på stig. Förbättringen i löpekonomi skedde parallellt med ett försämrat VO$_{2\text{max}}$ och högre hjärtfrekvens vid submaximal löpning. Trots den förbättrade löpekonomin var de löpdynamiska variablerna oförändrade vilket lämnar den mekaniska förklaringen till förbättringen av löpekonomin obesvarad.

Tidigare studier har utgjorts på plana underlag med positiv effekt, denna studie uppvisade förbättringar av löpekonomin för den grupp som tränat plyometri på hårt och plant underlag, men med tydligast förbättring vid obanad löpning. Den förbättrade löpekonomin kan troligtvis kopplas samman med neurologiska anpassningar, då resultat likt de som visats i denna studie kan representera indirekta mät på det neuromuskulära systemets förmåga att upprepade ganger producera kraft i snabb takt under intensiv träning, samt att förmågan att lagra och tillgodogöra den elastiska energin har ökat (Barnes & Kilding 2015b, s. 45; Saunders et al.)
Lacour och Bourdin nämner även att det kan finnas en möjlig koppling mellan förbättrad löpekonomi/lägre energiförbrukning och en ökad mitokondriell effektivitet och/eller förändringar gällande biomekaniska parametrar så som fotledens rörelser vid landning och under stödfasen samt knävinkeln vid frånskjut vilka är relaterade till den elastiska energilagringen under markkontakttid (2015, s. 662). Att endast det är gruppen på hårt underlag som har visat på signifikant förbättring samt tendens till förbättring av löpekonomi skulle kunna kopplas till att de i större utsträckning än gruppen på mjukt underlag har kunnat nytta SSC under träningspassen. Då den elastiska energin, vid träning på mjukt underlag, går till spillo på grund av en förlängd markkontakt då foten sjunker ner i underlaget kan det istället ha skapats en större muskulär belastning vilket inte gett samma positiva effekt på löpekonomin. (Lacour & Bourdin 2015, s. 658; Rattray & Roberts 2012, s. 294)

Endast en av nio undersökta löpdynamiska parametrar uppvisade signifikant förändring mellan för- och eftertest. Då plyometrisk träning sägs öka elasticiteten i muskulatur och senor och det vid tidigare studier visats att detta har sänkt markkontakttid hos löpare (Barnes & Kilding 2015b, s. 45; Paavolainen et al. 1999, s. 1530) kan det känna överraskande att inte fler förändringar skedde för träningsgrupperna i denna studie. Detta kan eventuellt härledas till Barnes och Kildings teori om att löpare antar ett löpstegsmönster som denne anser mest fördelaktigt (2015a, s. 7). Detta behöver troligtvis inte betyda att det är det absolut mest effektiva rörelsemönster ur ett löpekonomiskt perspektiv, men att det är ett invant rörelsemönster som löparen automatiskt tilltar vid olika typer av underlag. Att en typ av rörelsemönster har blivit invant och automatiserat gör att det troligen även tar en längre period att göra förändringar, särskilt om det inte finns med som ett medvetet val. Det hade därmed varit intressant om träningsinterventionen pågått under en längre tid, för att då kunna undersöka om de löpdynamiska parametrarna hade påverkats i större utsträckning.

I figur 17 visas en icke-signifikant korrelation mellan förändring i löptid och förändring i VO\textsubscript{2}max. En förbättrad tid på det maximala prestationstestet har skett hos vissa FP trots en sänkt maximal syreupptagning. En sänkt maximal effekt med 4-5 ml/kg/min är något som kan tänkas borde ha orsakat markanta prestationssänkningar. I figur 16 visas korrelationen mellan förändrad löpekonomi på det submaximala löptestet på stig och löptiden på det avslutande prestationstestet på tid. Figuren visar en positiv signifikant korrelation (p = 0,004) vilket innebär att en förbättrad löptid korrelerar med en förbättrad löpekonomi istället för VO\textsubscript{2}max. Detta kan bero på ovan nämnda neurologiska, mitokondriella och biomekaniska
parametrar; att muskulatur och senor producerar, lagrar och tillgodosör kraft och energi mer effektivt och därmed ger ett kraftigare frånskjut i löpsteget vilket ger en högre löphastighet. Att löpekonomin kan förbättras trots försämrat VO2max kan vara av stor vikt, då det har visats att VO2max tenderar uppnå en platå efter några års intensiv träning, trots en ökad mängd eller intensitet (Paavolainen et al. 1999, s. 1530). Andra faktorer kan därmed vara avgörande för att utvecklas inom sin idrott, och den plyometriska träningen skulle då kunna vara en metod för att eventuellt kunna förbättra sin löpekonomi och då till följd sin fysiska prestationssförmåga.

4.2 Metodiskussion

För god validitet och reliabilitet är krav på standardisering, kalibrering av utrustning samt det praktiska testförfarandet av stor vikt. Genom att informera FP gällande vikten av identisk förberedelse inför de båda testerna gällande kostintag, träning, återhämtning, personlig utrustning/klädsel försökte slumpmässiga felkällor minimeras. Standardisering av testförfarande samt kalibrering av utrustning uppfylldes genom god förberedelse och planering av testprotokoll och riktlinjer samt erfarna testledare från Riksidrottsförbundets fysiologiska idrottslaboratorium som till vardags arbetar med liknande tester och har goda kunskaper kring utrustningen. Trots en väl genomtänkt studiedesign var tidpunkten för studien en faktor som skapade problematik. Förtesterna genomfördes i slutet av september, med goda väderförhållanden för att utföra tester. Eftertesterna utfördes i början av november, med yttre förhållanden som inte återspeglade förtestet då det kvällen innan samt under första testdagen snöade. Detta medförde en kallare temperatur samt halt och lerigt underlag vilket var mer tungsprunget för FP. Väderförhållandet skapade även problem med lokaltrafiken och ledde till att flertalet FP blev försenade, tidschemat kunde inte efterföljas till fullo och därmed inte efterlikna förtestets schema till lika stor grad samt att ett visst stresspåslag hos FP kan ha påverkat testresultaten. En studieperiod tidigare på året, för att minimera större förändringer i väderförhållandet hade varit önskvärt. Även utrustningen kan ha påverkat FP under testerna, då övervägande delen av dem inte utfört tester med ansiktsmask tidigare. Vissa upplevde ett visst obehag av masken då den behöver sitta tätt mot ansiktet, samt att den till viss del skyms sikten vid löpningen i obanad terräng. Detta hade troligtvis kunnat minimeras genom ett provtillfälle där FP fått vänja sig vid att springa med masken på, och därmed känt sig mer bekväma vid testtillfället. Likaså hade ett provtillfälle för det maximala prestationstestet varit önskvärt, då det hade kunnat vara en hjälp för FP att veta vilken ungefärlig hastighet de hade kunnat löpa i för att klara hela slingan med maximal intensitet.
För att stärka trovärdigheten i denna studie hade en större kontroll av FP önskats. FP utförde träningspassen enskilt (eller under föreningsträning/skoltid) och gällande den övriga löp- och orienteringsträningen gavs endast information om att fortsätta med den rådande träningssvolymen. Det sistnämnda fullföljdes som tidigare nämnt inte. En övergripande kontroll över samtlig träning hade varit mer lämpligt för att kunna analysera enbart den plyometriska träningens effekt, utan påverkan av förändringar i resterande träning. Hade även de plyometriska träningspassen utförts på ett och samma ställe hade standardiseringen gällande mattornas tjocklek och mjuklek förbättrats. Vid analys av resultaten inkluderades samtliga FP utan hänsyn till antalet tränaade pass. Det hade dock varit intressant att undersöka en eventuell korrelation mellan testresultat och antal utförda plyometriska pass. Vissa förändringar gällande testerna hade även kunnat göras för att ytterligare stärka trovärdigheten. Detta genom att styra tiden som löparna skulle slutföra löpslingorna på vid eftertestet. Trots att det i studien inte skiljde signifikant gällande löptiden per slinga mellan för- och eftertest och att beräkningen av löpekonomin tar tiden i beaktande, hade en identisk löptid per slinga på för- och eftertest för varje enskild FP stärkt resultaten. Vid liknande tester inomhus har löphastigheten kontrollerats med hjälp av utplacerade lampor, vilka ger en ljussignal när löparen ska passera (Paavolainen et al. 1999, s. 1529). Om detta var genomförbart även vid fälttester i terräng hade detta med fördel kunnat användas vid studier likt denna.

4.3 Begränsningar

En begränsning med denna studie, och som eventuellt kan ha påverkat resultaten, är bortfallet av FP. Av de initialt 25 orienterarna, fullföljde 19 studien. Samtliga sex personer som föll bort tillhörde gruppen på hårt underlag vilket gav en snedfördelning på 12 personer i gruppen på mjukt underlag och 7 personer på hårt. Två personer i gruppen på mjukt underlag kunde vid eftertesterna inte fullfölja samtliga delar vilket gav ytterligare bortfall. Ett större urval hade varit en fördel för att kunna ge mer tillförlitliga resultat och mer generaliserbara slutsatser.

Ytterligare en faktor som eventuellt kan ha varit en begränsning är prestationstestets utformning, den avslutande slingan som löptes på stig med önskad maximal intensitet. Det var en slinga som omfattade 1,35 km löpning på övervägande del grusväg. Orientering är visserligen en individuell idrott där varje löpare tävlar enskilt, men vid ett prestationstest likt detta där det handlar om att rent fysiskt (utan orienteringsmoment) pressa sig maximalt kan mentala faktorer vara en stor bidragande faktor. Vid liknande tester på exempelvis löpband, där testledaren under hela testet är närvarande, kan påhejning peppning öka motivationen att
anstränga sig ytterligare. Men vid ett maximalt löptest som i denna studie, kan den mentala styrkan att motivera sig själv variera mellan FP och därmed påverka resultatet.

Kopplat till FP kan även tidsomfattningen för träningsinterventionen diskuteras. Tidigare studier har visat att plyometrisk träning kan ge effekt på löpekonomi efter så kort tid som tre veckor (Paavolainen et al. 1999, s. 1530), men det antas då att träningspassen har kunnat utföras korrekt och med fullständig intensitet. Vissa av FP i denna studie upplevde övningarna i träningsplaneringen som något koordinativt utmanande, vilket kan ha påverkat den/de första träningspassens intensitet i hoppen. En längre träningsperiod kan eventuellt ge en bättre inlämnning av övningarna, och därmed en möjlig högre träningseffekt.

Slutligen så kan mätutrustningen anses vara en begränsning. Flertalet valideringsstudier för Metamax 3B har gjorts, med de generella slutsatserna att utrustningen är reliabel samt godtyckligt valid, och därmed kan ge en relativt god indikation på de verkliga metabola kraven (Vogler, Rice & Gore 2010, s. 741; Macfarlane & Wong 2012, s. 2542). Douglas Bag-metoden anses fortfarande vara den metod som ger de högsta valida och reliabla resultaten och kan därmed anses vara lämpligare att använda vid studier. Denna metod hade dock även den kunnat bedömas som en begränsning, då det i synnerhet vid terränglöpning hade varit problematiskt med transporten av Douglas Bag-säckarna för FP. (Prieur, Castells & Denis 2003, s. 881 f.)

4.4 Framtida forskning

Framtida forskning under mer kontrollerade former krävs för att kunna säkerställa effekten av den plyometriska träningen. En högre reglering av den totala träningsvolymen behövs för att kunna utvärdera de enskilda träningsmomentens resultat. Även än mer idrottsseptiska träningsstudier skulle vara intressant, där de olika träningsunderlagen representeras av exempelvis grusväg och gräsplan istället för inomhusmiljöer. Likaså krävs studier med fler försökspersoner, samt med olika tidsomfattning och träningsfrekvens för att kunna undersöka vilka träningsupplägg som är av störst relevans för orienterare. Då denna studie mötte en viss problematik på grund av väderomställning skulle studier även behöva utföras under flertalet olika tidsperioder under året, men framförallt med mer jämförbara förhållanden mellan för- och eftertest.
Studier som tidigare behandlat den plyometriska träningen effekt för traditionell löpning har haft försökspersoner på såväl motionsnivå som elitnivå. Detta vore intressant även inom orienteringen, då det visats att elitlöpare har en bättre löpekonomi vid löpning i tung terräng än subelit (Jensen, Johansen & Kärkkäinen 1999, s. 948). Det hade därmed varit givande att utföra studier på grupper på olika nivå för att kunna undersöka om den plyometriska träningen ger olika effekt beroende på tidigare fysisk kapacitet, samt om den plyometriska träningen kan anpassas efter nivå.

5 Slutsats

5 veckors plyometrisk träning på hårt underlag har förbättrat löpekonomin signifikant vid löpning i obanad terräng (p = 0,03) samt visat en tendens till förbättrad löpekonomi på stig (p = 0,19). Dessa förbättringar skedde trots ett försämrat VO\textsubscript{2max} (p = 0,0002). Identiska övningar på mjukt underlag gav ingen förbättring i löpekonomi på något av de testade underlagen. En signifikant korrelation visades mellan förändringen i löptid på prestationstestet och förändringen i löpekonomi på stig (p = 0,004). Resultaten tyder på att en prestationförbättring kan ske trots en oförändrad maximal effekt, och att därmed flera delar inom den fysiska kapaciteten är av stor vikt att utveckla för fullgod prestationssförmåga.
Tack!
Jag vill slutligen rikta ett stort tack till Håkan Carlsson, Svenska Orienteringsförbundet och Filip Larsen för att jag fick möjligheten att genomföra denna studie tillsammans mer er! Filip har som handledare ställt upp dagligen med hjälp och råd vilket uppskattas enormt. Ett stort tack även till Riksidrottsförbundet som finansierat projektet, till personalen på Riksidrottsförbundets idrottsfysiologiska laboratorium som har genomfört testerna, och självklart tack till alla försökspersoner som fullföljde studien och visade stort intresse och engagemang under träningsinterventionen och testtillfällena.
Käll- och litteraturförteckning

Bilaga 1

Litteratursökning

Syfte och frågeställningar:
Syftet med denna studie är att undersöka om underlaget vid plyometrisk träning påverkar löpekonomin hos orienterare vid varierande underlag.

Frågeställningar

• Ger plyometrisk träning på mjukt underlag bättre löpekonomi hos orienterare vid löpning i terräng?
• Är effekten på löpekonomin specifik för det underlag plyometrin har tränats på?
• Hur påverkas löpdynamiska parametrar av hoppstyrketräning på olika underlag?

Vilka sökord har du använt?

Running economy, training, surface, factors, plyometrics, runner, orienteer, strike, drop jump, protocol, running economy values, running performance, metamax

Var har du sökt?

SportDiscus, PubMed

Sökningar som gav relevant resultat

PubMed: running economy values
PubMed: running performance
PubMed: Metamax
SportDiscus: orienteering & running
SportDiscus: running economy & plyometrics
SportDiscus: running economy & factors
SportDiscus: running economy & surface
SportDiscus: running economy & training
SportDiscus: running economy & runner & orienteer

Kommentarer

Relativt lätt att hitta litteratur gällande löpekonomi och plyometrisk träning för löpare, kopplad till orientering finns det inte lika mycket att tillgå. En stor del artiklar hittades via referenser från andra studier.
Bilaga 2

Testprotokoll fälttest

<table>
<thead>
<tr>
<th>Kommentar</th>
<th>Tid</th>
<th>Person</th>
<th>Telefonnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>08:30</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>09:30</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:30</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11:30</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12:30</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13:30</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14:30</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15:30</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16:30</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

- **Slinga 1 & 2 lös med låg intensitet, motsvarande hastighet vid långdistans**
- **Slinga 3 lös med jämn maximal intensitet och gör ett prestationstest**
- 1 minuters vila erhålls efter varje avslutad slinga, under vilken laktatprovtagning sker
Bilaga 3
Informationsbrev / Informerat samtycke

Ger hoppstyrketräning bättre löpekonomi i terräng hos orienterare?

Förfrågan om medverkan i en fysiologisk forskningsstudie:

Bakgrund:
Orientering är en komplex idrott som ställer stora krav på utövaren. En viktig prestationfaktor är löpekonomin, dvs hur mycket energi det kostar att förflytta sig en viss sträcka i terrängen. Flera tidigare undersökningar har visat att det föreligger en stor skillnad mellan traditionell löpning på slät mark eller löpband och löpning i terräng. Vid traditionell löpning bestäms löpekonomin av andelen långsamma muskelfibrer, antropometriska förutsättningar samt elasticitet i muskler och senor. Vid löpning på mjukt underlag som i myrmark eller i tekniskt krävande terräng förlängs tiden som foten har kontakt med marken och man kan inte längre dra nytta av den s.k. gummibandseffekten; att återvinna energin som lagras i muskler och senor. Istället verkar andra, hittills okända faktorer, spela roll för vem som kan förflytta sig energisnålt i terrängen.

En väl etablerad metod för att förbättra löpekonomin vid traditionell löpning är att träna hoppstyrka genom olika hoppövningar; jämfota upphopp, enbenschopp, nedhopp från plint, hopp över häckar etc. Denna styrketräningsmetod används för att förbättra muskels elastiska egenskaper samt att förbättra den neuromuskulära färdigheten vilket leder till en effektivare muskelkontraktion. Dessa övningar ska utföras så explosivt som möjligt och med kort kontakttid med marken.

Syftet med detta projekt är att undersöka:
Om hoppstyrka på mjukt eller hårt underlag, med övningar som liknar det rörelsemönster och de kontakttider som orienterare har vid löpning i terräng, förbättrar löpekonomi vid löpning på olika underlag samt prestation.

Genomförande:
Försöken innefattar två testtillfällen på Gymnastik och Idrottshögskolan (GIH) samt en träningsperiod över 4-6 veckor där du får medverka i en träningsstudie där du får träna hoppstyrka vid 2-3 tillfälle per vecka. Ett pass med hoppstyrka tar ca 15-30 minuter.

Vid testtillfällena på GIH testar vi din spänst och explosiva förmåga genom hopp på en kraftplatta, vi mäter din löpekonomi vid löpning i terräng (snitslad slinga i skogsparti) samt på löpband. Du får även avsluta med ett maxtest på löpband för mätning av maximal syreupptagningsförmåga och för att få ett prestationsmått. Total tidsåtgång vid dessa tillfällen är ca 4 timmar.

Du kan alltid avbryta ett försök när som helst utan att behöva svara på några frågor.
Jag intygar härmed även att jag fått information att mina data och personuppgifter sparas i ett register (för analys av forskningsresultaten), ansvarig för detta register är forskare Filip Larsen. Jag har läst denna information och anmäler mig som frivillig försöksperson.

Underskrift

Namnförtydligande

Datum

Vid frågor kontakta Filip Larsen på filip.larsen@gih.se 08 120 537 97
Bilaga 4
Hälsodeklaration

Hälsokontroll

Personupplysningar
Datum
Namn __ Personnummer ______
Adress __ Postnr___________
Telefon ____________________________ E-mail ______________________
Mobil __

Har du eller har du tidigare haft någon av följande sjukdomar?

1. Ofta förekommande förkylningar
 Kraftig förkylningar
 Senaste behandling med antibiotika __________________________
2. Halsfluss eller annan halsinfektion
3. Hösnuva
4. Nässelfeber
5. Astma
6. Överkänslighet för föda, medicin, tvättmedel el dylikt?
7. Diabetes (sockersjuka)
8. Lungjukdomar
9. Hjärtsjukdomar
10. Högt blodtryck
 Lågt blodtryck
11. Magsår, mag- eller tarmkatarr
 Medicin mot magbesvär
12. Någon form av gulsot
13. Leversjukdomar?
14. Ryggbesvär?
15. Huvudvärk (ofta förekommande eller migrän) □ □
Äter du smärtstillande medel mot huvudvärk? □ □

16. Använder du sömnmedel? □ □

17. Har du någon gång haft sjukdom eller skada som krävt sjukhusvård? □ □
När, var, för vad..............................

18. Har du haft någon överbelastningsskada under det senaste året
(benhinneinflammation, hälseneproblem, hopparknä eller dyl?)
JA NEJ

Om JA, vad för typ av skada?...

19. Styrketränar du regelbundet? I så fall hur många träningspass per vecka?
A) aldrig eller sporadiskt
B) 1 pass/vecka
C) 2-3 pass/vecka
D) 4 eller fler pass/vecka

20. Tränar du hoppstyrka/hoppövningar regelbundet? I så fall hur många träningspass per vecka?
A) aldrig eller sporadiskt
B) 1 pass/vecka
C) 2-3 pass/vecka
D) 4 eller fler pass/vecka
Bilaga 5
Träningsplanering

Två pass utförs per vecka med minst 48-72 timmars vila emellan.

Uppvärmning – minst 15 minuter löpning/orientering/cykling med lugn intensitet
Vila mellan repetitioner= VMR
Vila mellan set= VMS

Vecka 1.
Löpskolning, höga knän: 2x20 sekunder (jogg på stället). VMS= 30 sek
Drop jump på två ben: 1x6 reps. VMR=10sek
Drop jumps på ett ben åt gången: 1x4 reps. Dvs. sammanlagt 2 reps per ben. Varannat ben åt gången. VMR: 10 sek.
Enbens vristhopp: 1x8. Höga hopp med varannan fot.
Skridskohopp åt sidan: 2 set x 6 hopp i varje (3 per ben). VMS: 30 sek
Stående 3-steg: 2x2(x3 hopp i varje rep.) Byt landningsfot varannan gång. VMR: 20 sek.
VMS: 1 min
Utfallshopp: 1x8
Antal hopp: 28 + löpskolning per ben, varav 16 är vertikala, 12 horisontella

Vecka 2.
Löpskolning, höga knän: 2x20 sekunder. VMS= 30 sek
Drop jump på två ben: 1x6 reps. VMR=10sek
Drop jumps på ett ben åt gången: 1x4 reps. Dvs. sammanlagt 2 reps per ben. Varannat ben åt gången. VMR: 10 sek.
Enbens vristhopp: 1x8. Höga hopp med varannan fot.
Skridskohopp åt sidan: 2 set x 6 hopp i varje. VMS:30 sek
Stående 3-steg: 2x2. Byt landningsfot varannan gång. VMR: 20 sek. VMS: 1 min
Utfallshopp: 1x8
Antal hopp: 28 + löpskolning per ben, varav 16 är vertikala, 12 horisontella

Vecka 3.
Löpskolning, höga knän: 2x20 sekunder. VMS= 30 sek
Drop jump på två ben: 2x4 reps. VMR=10sek/VMS= 2min
Drop jumps på ett ben åt gången: 1x6 reps. Dvs. sammanlagt 3 reps per ben. Vartannat ben åt gången. VMR: 10 sek.

Enbens vrithopp: 1x10. Höga hopp med varannan fot.

Skridskohopp åt sidan: 2x8. VMS: 30 sek

Stående 3-steg: 2x3. Byt landningsfot varannan gång. VMR: 20 sek. VMS: 1 min

Utfallshopp: 1x10

Antal hopp: 41 + löpskolning per ben, varav 21 är vertikala, 20 horisontella.

Vecka 4.

Löpskolning, höga knän: 3x20 sekunder VMS= 30 sek

Drop jump på två ben: 2x5 reps. VMR=10sek/VMS=2 min

Drop jumps på ett ben åt gången: 1x8 reps. Vartannat ben åt gången. VMR: 10 sek.

Enbens vrithopp: 2x6. I varje set hoppar man tre ggr med vardera fot. VMS=2 min

Skridskohopp åt sidan: 2x8 (4 per ben i varje set). VMS: 30 sek

Stående 3-steg: 2x4. Byt landningsfot varannan gång. VMR: 20 sek. VMS: 2 min

Utfallshopp: 2x6 VMS=2 min

Antal hopp: 50 + löpskolning per ben, varav 26 vertikala, 24 horisontella.

Vecka 5.

Löpskolning, höga knän: 3x20 sekunder. VMS= 30 sek

Drop jump på två ben: 2x5 reps. VMR=10sek/VMS=2 min

Drop jumps på ett ben åt gången: 1x8 reps. Vartannat ben åt gången. VMR: 10 sek.

Enbens vrithopp: 2x6. I varje set hoppar man tre ggr med vardera fot. VMS=2 min

Skridskohopp åt sidan : 2x8. VMS:30 sek

Stående 3-steg: 2x4. Byt landningsfot varannan gång. VMR: 20 sek. VMS: 2 min

Utfallshopp: 2x6 VMS=2 min

Antal hopp: 50 + löpskolning per ben, varav 26 vertikala, 24 horisontella.
Bilaga 6

Träningsövningar

1: Löpskolning – höga knän på var 3:e

Utförande:
1 – Rörelsen sker under lätt jogg, med trippande steg under låg hastighet
2 – Jogga lätt, frekvensen bör vara relativt hög men hastigheten låg, rörelsen sker endast med en liten förflyttning framåt
3 – Jogga två steg och gör vid det tredje steget ett explosivt knäuppdrag
4 – Fortsätt med två joggsteg och ett explosivt knäuppdrag 20-30 meter, knäuppdraget blir då på vartannat vänster som höger ben

Att tänka på:
Håll överkroppen i en upprätt position genom hela sekvensen
Håll foten på det uppdragna benet i en lätt dorsalflektion
Jogga med trippande steg med en fotisättning under kroppen
Använd armarna till hjälp för balans

2 & 3: Dropjumps – jämfota- & enbenshopp

Utförande:
1 – inled med att försökspersonen står på en 30 cm hög box med kraftplattan ca 0,2 m framför boxen
2 – Instruera försökspersonen att placera händerna på höften, ta ett steg ut från boxen utan att varken gå rakt ner eller hoppa och vid kontakt med kraftplattan hoppa så högt som möjligt med minsta möjliga kontakttid i marken
3 – Försäkra att start- och landningspositionen är konstant genom alla försök, exempelvis landning med fötterna dorsalflekterade och flexion i knän/höft
4 – Upprepa tre gånger jämfota samt vid enbenshopp tre gånger per ben

Att tänka på:
Tanken med övningen är att öka kraften vid frånskjut samt att korta ned kontakttiden då foten är i marken
Vid landning på mattan ska du så fort som möjligt skjuta ifrån i ett maximalt upphopp i vertikal riktning

4: **Enbens-vristhopp – frånskjut på var 3:e**

Utförande:
1 – Starta jämfota
2 – Hoppa uppåt på ett ben med en lätt flexion i knät. Frånskjutet ska ske främst med hjälp av vaden genom att sträcka i vristen.
3 – Gör två små hopp följt av att kraftigare frånskjut där hopphöjden blir betydligt högre och explosivare

Att tänka på:
Håll höften sträckt och ryggen rak genom hela övningar, stabilisera med hjälp av en anspänning i bålmuskulaturen
Använd armarna som hjälp för såväl balans som kraft vid frånskjutet

5: **Skridskohopp**

Utförande:
1 – Stå på höger ben och skjut explosivt ifrån åt vänster
2 – Landa på vänster ben med mjukt knä och bromsa rörelsen under flexionsfasen/den excentriska fasen. Höger ben korsar lätt bakom vänster och snuddar vid marken för att bibehålla balans
3 – Skjut direkt ifrån åt höger och landa på höger fot

Att tänka på:
Vid rörelser i sidled är kontroll och stabilitet gällande bål och knän mycket viktigt
Vid landning i hoppen: håll en god kontroll över knät och stabilisera i en position rakt över foten
Använd det bakre benet som stöd för hjälp med balans och för att kunna utveckla hög kraft vid frånskjutet
Hitta en balans mellan vertikal och lateral rörelse för att upprätthålla en kort markkontakttid

6: **Stående 3-steg**

Utförande:
1 – Börja stillstående med båg fötterna parallellt och höftbrett avstånd
2 – Hoppa iväg jämfota
3 – Landa på en fot och skjut direkt iväg i ett nytt hopp
4 – Landa på den andra foten och skjut direkt iväg i ett nytt hopp
5 – Landa jämfota
6 – Upprepa tre gånger

Att tänka på:
Håll en god kontroll och stabilitet i knäna vid landning och frånskjut, det vill säga att knät hålls stabilt och inte faller i sidled
Varje steg ska ske explosivt: hög kraft och hög hastighet

7: Utfallshopp
Utförande:
1 – Inled stående med fötterna parallellt med höftbrett avstånd
2 – Hoppa ned i ett utfallssteg där både främre och bakre knät håller en 90° vinkel i bottenläget. Bromsa rörelsen på vägen ned och vänd när knät lätt snuddar marken
3 – Skjut direkt ifrån i ett vertikalt hopp och landa i ett nytt utfall med benen i motsatt riktning
4 – Upprepa tio gånger, d v s fem gånger per ben

Att tänka på:
Bibehåll fötterna med höftbrett avstånd även i utfallet för god balans
Håll överkroppen i upprätt läge och försök göra dig så lång som möjligt i varje hopp
Hoppen ska vara explosiva men kontrollerade i den nedåtgående fasen, håll en god stabilitet i bål och knä och bromsa rörelsen innan knät slår i marken
Bilaga 7

Bilder på syreupptagningsutrustning

Metamax 3B (CORTEX Biophycs GmbH, Leipzig, Tyskland)
[2016-12-14]

Den portabla syreupptagningsutrustningen monterad på FP